Abstract:
A camera may be mounted under a display in an electronic device. The display may include a polarizer layer, a color filter layer, and a thin-film-transistor layer. A layer of material such as a glass insert may be attached to an edge of the display. Openings may be formed in the layers of the display and the insert to accommodate the camera. A sleeve structure may be mounted within an opening. The camera may include lens structures formed from a stack of lens elements. One or more layers of the display may be interposed within the lens structures. The glass insert may be mounted within a notch in the color filter layer and thin-film transistor layer or along a straight edge of the color filter layer and thin-film transistor layer. The edge of the color filter layer may be recessed with respect to form a mounting shelf for the insert.
Abstract:
An electronic device may have a display. Inactive portions of the display such as peripheral portions of the display may be masked using an opaque masking layer. An opening may be provided in the opaque masking layer to allow light to pass. For example, a logo may be viewed through an opening in the opaque masking layer and a camera may receive light through an opening in the opaque masking layer. The display may include upper and lower polarizers, a color filter layer, and a thin- film transistor layer. The opaque masking layer may be formed on the upper polarizer, may be interposed between the upper polarizer and the color filter layer, or may be interposed between the color filter layer and the thin- film transistor layer. The upper polarizer may have unpolarized windows for cameras, logos, or other internal structures.
Abstract:
Electronic devices may be provided with backlight structures that provide backlight illumination for a display. The backlight structures include a light source such as an array of light-emitting diodes that launches light into an edge of a light guide plate. The light guide plate distributes the light laterally across display layers in the display. One or more optical films such as brightness enhancement films and diffuser layers are interposed between the display layers and the light guide plate. The light guide plate includes light guide plate alignment features that mate with corresponding optical film alignment features in the optical films. The light guide plate alignment features may be protrusions that extend into openings such as notches or holes in the optical films. The light guide plate may have a protruding portion that extends around a periphery of the light guide plate and surrounds a perimeter of the optical films.
Abstract:
Embodiments are directed to an electronic device having an illuminated body that defines a virtual or dynamic trackpad. The electronic device includes a translucent layer defining a keyboard region and a dynamic input region along an external surface. A keyboard may be positioned within the keyboard region and including a key surface and a switch element (e.g., to detect a keypress). A light control layer positioned below the translucent layer and within the dynamic input region may have a group of illuminable features. The electronic device may also include a group of light-emitting elements positioned below the optical diffuser. One or more of the light control layer or the group of light-emitting elements may be configured to illuminate the dynamic input region to display a visible boundary of an active input area. At least one of a size or a position of the visible boundary may be dynamically variable.
Abstract:
An electronic device such as a portable computer may have a housing with a rectangular recess in which layers of display structures such as a light guide panel layer and other light guide structures are directly mounted without intervening chassis members. Mating alignment features in the housing and display structures may be used to align the display structures relative to the housing. A display may be formed from glass layers such as a color filter glass layer and a thin-film transistor glass layer. Backlight for the display may be generated by an array of light-emitting diodes. The light guide panel may direct light from the light-emitting diodes through the glass layers. A clamp may be used to hold the light-emitting diodes and light guide structures in place in the recess. An undercut in the housing may also hold the light guide structures in place.