Abstract:
The present disclosure generally relates to content-based tactile outputs. In some embodiments, user interfaces associated with content-based tactile outputs are described. In some embodiments, user interfaces associated with end-of-content tactile outputs are described. In some embodiments, user interfaces associated with moving a user interface in response to different types of input are described. In some embodiments, user interfaces associated with adjustable item-based tactile outputs are described. In some embodiments, user interfaces associated with input velocity-based tactile outputs are described.
Abstract:
The present disclosure generally relates to content-based tactile outputs. In some embodiments, user interfaces associated with content-based tactile outputs are described. In some embodiments, user interfaces associated with end-of-content tactile outputs are described. In some embodiments, user interfaces associated with moving a user interface in response to different types of input are described. In some embodiments, user interfaces associated with adjustable item-based tactile outputs are described. In some embodiments, user interfaces associated with input velocity-based tactile outputs are described.
Abstract:
An electronic device (101) that provides situationally-aware alerts determines to provide an alert output, such as haptic, audio, visual, and so on, via an output device (212), determines a movement pattern (550) based on one or more signals from one or more sensors indicating information relating at least to movement of the electronic device (101), and adjusts the alert output to account for the movement pattern (560). In some implementations, the electronic device (101) may adjust the alert output by delaying the alert output (340). In other implementations, the electronic device (101) may adjust the alert output by altering the alert output to be discernible despite the movement pattern based on a cadence of the movement pattern (680). In still other implementations, the electronic device (101) may determine to provide the alert output in response to receiving an incoming communication and may adjust the alert output differently based on a priority associated with the incoming communication.
Abstract:
An electronic device that provides situationally-aware alerts determines to provide an alert output (such as haptic, audio, visual, and so on) via an output device, determines a movement pattern based on one or more signals from one or more sensors indicating information relating at least to movement of the electronic device, and adjusts the alert output to account for the movement pattern. In some implementations, the electronic device may adjust the alert output by delaying the alert output. In other implementations, the electronic device may adjust the alert output by altering the alert output to be discernible despite the movement pattern based on a cadence of the movement pattern. In still other implementations, the electronic device may determine to provide the alert output in response to receiving an incoming communication and may adjust the alert output differently based on a priority associated with the incoming communication.
Abstract:
The present disclosure generally relates to content-based tactile outputs. In some embodiments, user interfaces associated with content-based tactile outputs are described. In some embodiments, user interfaces associated with end-of-content tactile outputs are described. In some embodiments, user interfaces associated with moving a user interface in response to different types of input are described. In some embodiments, user interfaces associated with adjustable item-based tactile outputs are described. In some embodiments, user interfaces associated with input velocity-based tactile outputs are described.
Abstract:
An electronic device receives a first set of one or more inputs corresponding to user interface elements displayed on the display and a first set of one or more tactile outputs, and also receives a second set of one or more inputs corresponding to one or more hardware elements and a second set of one or more tactile outputs. In response, in accordance with a determination that the first set of one or more tactile outputs and the second set of one or more tactile outputs overlap, the device outputs, with the set of one or more tactile output generators, a modified tactile output sequence that is modified so as to emphasize the second set of one or more tactile outputs relative to the first set of one or more tactile outputs.
Abstract:
The present disclosure generally relates to content-based tactile outputs. In some embodiments, user interfaces associated with content-based tactile outputs are described. In some embodiments, user interfaces associated with end-of-content tactile outputs are described. In some embodiments, user interfaces associated with moving a user interface in response to different types of input are described. In some embodiments, user interfaces associated with adjustable item-based tactile outputs are described. In some embodiments, user interfaces associated with input velocity-based tactile outputs are described.
Abstract:
An electronic device receives a first set of one or more inputs corresponding to user interface elements displayed on the display and a first set of one or more tactile outputs, and also receives a second set of one or more inputs corresponding to one or more hardware elements and a second set of one or more tactile outputs. In response, in accordance with a determination that the first set of one or more tactile outputs and the second set of one or more tactile outputs overlap, the device outputs, with the set of one or more tactile output generators, a modified tactile output sequence that is modified so as to emphasize the second set of one or more tactile outputs relative to the first set of one or more tactile outputs.