Abstract:
In the field of computer enabled cryptography, such as a keyed block cipher having a plurality of rounds, the cipher is hardened against an attack by a protection process which obscures the round keys using the properties of group field automorphisms and applying masks to the states of the cipher, for encryption or decryption. This is especially advantageous in a "White Box" environment where an attacker has full access to the cipher algorithm, including the algorithm's internal state during its execution. This method and the associated computing apparatus are useful for protection against known attacks on "White Box" ciphers, by eliminating S-box operations, together with improved masking techniques and increasing the cipher's complexity against reverse engineering and key storage attacks.
Abstract:
Method and apparatus for increasing security of a cryptographic algorithm such as deciphering, enciphering, or a digital signature using a block type cipher such as AES implemented for instance in a "whitebox" model with the cipher key either known or unknown at the compilation time. This method is secure for use in entrusted environments, particularly for securing cryptographic keys. The look up tables characteristic of such algorithms are protected against attack here by making all such tables of the same size and indistinguishable, and further by masking the output values of such tables, typically where the tables carry out a permutation function or a logical exclusive OR operation.
Abstract:
Embodiments described herein enable the generation of cryptographic material for ranging operations in a manner that reduces and obfuscates potential correlations between leaked and secret information. One embodiment provides for an apparatus including a ranging module having one or more ranging sensors. The ranging module is coupled to a secure processing system through a hardware interface to receive at least one encrypted ranging session key, the ranging module to decrypt the at least one encrypted ranging session key to generate a ranging session key, generate a sparse ranging input, derive a message session key based on the ranging session key, and derive a derived ranging key via a key derivation cascade applied to the message session key and the sparse ranging input, the derived ranging key to encrypt data transmitted during a ranging session.
Abstract:
Method and apparatus for increasing security of a cryptographic algorithm such as deciphering, enciphering, or a digital signature using a block type cipher such as AES implemented for instance in a "whitebox" model with the cipher key either known or unknown at the compilation time. This method is secure for use in entrusted environments, particularly for securing cryptographic keys. The look up tables characteristic of such algorithms are protected against attack here by making all such tables of the same size and indistinguishable, and further by masking the output values of such tables, typically where the tables carry out a permutation function or a logical exclusive OR operation.