Abstract:
The disclosed embodiments provide a battery cell. The battery cell includes a set of layers forming a non-rectangular shape, wherein the set of layers comprises a cathode with an active coating, a separator, and an anode with an active coating. The battery cell also includes a first conductive tab coupled to the cathode and a second conductive tab coupled to the anode. The layers are enclosed in a flexible pouch, and the first and second conductive tabs are extended through seals in the pouch to provide terminals for the battery cell. Furthermore, the non-rectangular shape is created by removing material from one or more of the layers.
Abstract:
A portable electronic device (100) that provides audio sound output from multiple internal speakers (114, 120) to a common output audio opening (108) in a housing of the portable electronic device is disclosed. In one embodiment, the multiple internal speakers (114, 120) are provided in close proximity to one another, such as adjacent to one another, and serve to produce audio sound pertaining to different audio channels. The sound (i.e., pressure waves) produced by each of the internal speakers (114, 120) is directed into a respective acoustic chamber (112, 118) and output via the output audio opening (108) in the housing (102). Accordingly, the acoustic chambers (112, 118) for the multiple internal speakers (114, 122) can each direct their audio sound output to the same output audio opening (108) in the housing (102). The respective acoustic chambers can be formed adjacent to one another with a structural barrier (122) serving to separate the distinct acoustic chambers (112, 118).
Abstract:
Systems and methods for providing localized tactile output and systems and methods for obtaining localized physical characteristic information are disclosed. An electronic device can include a friction transducer configured to augment and/or detect friction between a surface of an electronic device and an object in contact with that electronic device. The electronic device may also include a force transducer configured to detect the force with which an object contacts a display. The force transducer may also provide mechanical output. The electronic device can also include a thermal transducer to augment and/or detect the temperature of various locations on a display.
Abstract:
A portable computing device is disclosed. The portable computing device can take many forms such as a laptop computer, a tablet computer, and so on. The portable computing device can include at least a single piece housing. The single piece housing includes a plurality of steps. The plurality of mounting steps is formed by at least removing a preselected amount of housing material at predetermined locations on the interior surface. At least some of the mounting steps are used to mount at least some of the plurality of internal operating components to the housing.
Abstract:
Disclosed herein are methods and systems for providing haptic output on an electronic device. In some embodiments, the electronic device includes an actuator configured to move in a first direction. The electronic device also includes a substrate coupled to the actuator. When the actuator moves in the first direction, the substrate or a portion of the substrate, by virtue of being coupled to the actuator, moves in a second direction. In some implementations, the movement of the substrate is perpendicular to the movement of the actuator.
Abstract:
The disclosed embodiments relate to the manufacture of a battery cell. The battery cell includes a set of layers including a cathode with an active coating, a separator, and an anode with an active coating. The battery cell also includes a pouch enclosing the layers, wherein the pouch is flexible. The layers may be wound to create a jelly roll prior to sealing the layers in the flexible pouch. A curve may also be formed in the battery cell by applying a pressure of at least 0.13 kilogram-force (kgf) (= 1.3 N) per square millimeter to the layers using a set of curved plates applying a temperature of about 85° C to the layers.
Abstract:
A methodology for connecting device components with circuitry located at different levels and orientations relative to one another is described. First circuitry can be located on a multi-plane rigid circuit board where the multi-plane rigid circuit board can include at least one flexible member sharing a common substrate with the multi-plane rigid circuit board that extends from a body portion of the multi-plane rigid circuit board. The flexible member can include traces used to convey power and/or data and an interface coupled to the power and/or data traces. The flexible member can be deflected or twisted to connect first circuitry on the body portion of the multi-plane rigid circuit board to second circuitry associated with another device component.
Abstract:
Systems and methods for providing localized tactile output and systems and methods for obtaining localized physical characteristic information are disclosed. An electronic device can include a friction transducer configured to augment and/or detect friction between a surface of an electronic device and an object in contact with that electronic device. The electronic device may also include a force transducer configured to detect the force with which an object contacts a display. The force transducer may also provide mechanical output. The electronic device can also include a thermal transducer to augment and/or detect the temperature of various locations on a display.
Abstract:
An accessory to device coupling system can include a first magnet array adapted for assembly with respect to a surface of an electronic device and a second magnet array adapted for assembly with respect to a surface of an accessory device, the accessory device configured to interact electrically with the electronic device. The first magnet array can include a first plurality of magnets arranged in a first pattern of alternating polarities, and the second magnet array can include a second plurality of magnets arranged in a second pattern of alternating polarities that corresponds to the first pattern of alternating polarities. The corresponding alternating polarity patterns can cause the second magnet array to couple to the first magnet array with a normalized attraction force only at an intended orientation and alignment, and with less than half of the normalized attraction force at any other orientation and alignment.