Abstract:
In an embodiment, an integrated circuit includes multiple instances of a component (e.g. a processor) and a control circuit. The instances may be configured to operate in various modes. Some of the modes are incapable of presenting a worst-case load on the power supply. The control circuit may be configured to monitor the instances and detect the modes in which the instances are operating. Based on the monitoring, the control circuit may request to recover a portion of the voltage margin established for worst-case conditions in the instances. If the instances are to change modes, they may be configured to request mode change from the control circuit. If the mode change causes an increase in the current supply voltage magnitude (e.g. to restore some of the recovered voltage margin), the control circuit may cause the restore and permit it to complete prior to granting the mode change.
Abstract:
A system and method for reducing power consumption through issue throttling of selected problematic instructions. A power throttle unit within a processor maintains instruction issue counts for associated instruction types. The instruction types may be a subset of supported instruction types executed by an execution core within the processor. The instruction types may be chosen based on high power consumption estimates for processing instructions of these types. The power throttle unit may determine a given instruction issue count exceeds a given threshold. In response, the power throttle unit may select given instruction types to limit a respective issue rate. The power throttle unit may choose an issue rate for each one of the selected given instruction types and limit an associated issue rate to a chosen issue rate. The selection of given instruction types and associated issue rate limits is programmable.
Abstract:
In an embodiment, a system may include multiple processors and an automatic power state controller (APSC) configured to switch the processors between various operating points. The operating points may be described by data programmed into the APSC, and the APSC may include a register that is programmable with a target operating point request identifying a target operating point for the processors from among the described operating points. The data describing the operating points may also include an indication of whether or not the number of processors that may be concurrently active at the operating point is limited. Based on the indication and the number of active processors, the APSC may override the requested operating point with a reduced operating point. In some embodiments, a digital power estimator (DPE) may monitor operation of the processors and may throttle the processors when high power consumption is detected.
Abstract:
In an embodiment, an integrated circuit includes multiple instances of a component (e.g. a processor) and a control circuit. The instances may be configured to operate in various modes. Some of the modes are incapable of presenting a worst-case load on the power supply. The control circuit may be configured to monitor the instances and detect the modes in which the instances are operating. Based on the monitoring, the control circuit may request to recover a portion of the voltage margin established for worst-case conditions in the instances. If the instances are to change modes, they may be configured to request mode change from the control circuit. If the mode change causes an increase in the current supply voltage magnitude (e.g. to restore some of the recovered voltage margin), the control circuit may cause the restore and permit it to complete prior to granting the mode change.
Abstract:
In an embodiment, a system may include multiple processors and an automatic power state controller (APSC) configured to switch the processors between various operating points. The operating points may be described by data programmed into the APSC, and the APSC may include a register that is programmable with a target operating point request identifying a target operating point for the processors from among the described operating points. The data describing the operating points may also include an indication of whether or not the number of processors that may be concurrently active at the operating point is limited. Based on the indication and the number of active processors, the APSC may override the requested operating point with a reduced operating point. In some embodiments, a digital power estimator (DPE) may monitor operation of the processors and may throttle the processors when high power consumption is detected.