Abstract:
An electronic device such as a head-mounted device may have displays. The display may have regions of lower (L) and higher (M, H) resolution to reduce data bandwidth and power consumption for the display while preserving satisfactory image quality. Data lines may be shared by lower and higher resolution portions of a display or different portions of a display with different resolutions may be supplied with different numbers of data lines. Data line length may be varied in transition regions between lower resolution and higher resolution portions of a display to reduce visible discontinuities between the lower and higher resolution portions. The lower and higher resolution portions of the display may be dynamically adjusted using dynamically adjustable gate driver circuitry and dynamically adjustable data line driver circuitry.
Abstract:
An electronic device may include a display. The display may be an organic light-emitting diode display. The organic light-emitting diode display may have a substrate layer, a layer of organic light-emitting diode structures, and a layer of sealant. Vias may be formed in the substrate layer by laser drilling. The vias may be filled with metal using electroplating or other metal deposition techniques. The vias may be connected to contacts on the rear surface of the display. Components such as flexible printed circuits, integrated circuits, connectors, and other circuitry may be mounted to the contacts on the rear surface of the display.
Abstract:
An electronic device may have a speaker for presenting audio to a user. The speaker may have a speaker diaphragm mounted in a speaker enclosure and driven using a speaker driver. A sensor such as a gas sensor, particulate sensor, or other environmental sensor may be mounted within the speaker enclosure. Control circuitry in the electronic device may move the speaker diaphragm to draw fresh air into the speaker enclosure or to capture a sample of liquid while using the environmental sensor to make sensor measurements. The control circuitry may use a display, other visual output devices, audio output devices, and/or vibrating output components to present alerts to the user based on environmental data from the environmental sensor.
Abstract:
Split jack assemblies are constructed with a tubeless pin block. Elimination (or split) of the tube, or more particularly, a tube that is an integrally formed part of the pin block form the pin block allows for the use of a tubeless pin block design that results in a jack assembly having smaller overall dimensions than a conventional jack assembly constructed to accommodate a plug of the same dimensions. The tubeless pin block can be used in conjunction with a tube sleeve or with a curved surface of a housing for an electronic device, or both to provide a plug receptacle of the split jack assembly.
Abstract:
Electronic devices may be provided that contain flexible displays and internal components. An internal component may be positioned under the flexible display. The internal component may be an output device such as a speaker that transmits sound through the flexible display or an actuator that deforms the display in a way that is sensed by a user. The internal component may also be a microphone or pressure sensor that receives sound or pressure information through the flexible display. Structural components may be used to permanently or temporarily deform the flexible display to provide tactile feedback to a user of the device. Electronic devices may be provided with concave displays or convex displays formed from one or more flexible layers including a flexible display layer. Portions of the flexible display may be used as speaker membranes for display-based speaker structures.
Abstract:
One exemplary implementation provides an improved user experience on a device by using physiological data to initiate a user interaction for the user experience based on an identified interest or intention of a user. For example, a sensor may obtain physiological data (e.g., pupil diameter) of a user during a user experience in which content is displayed on a display. The physiological data varies over time during the user experience and a pattern is detected. The detected pattern is used to identify an interest of the user in the content or an intention of the user regarding the content. The user interaction is then initiated based on the identified interest or the identified intention.
Abstract:
Combined force and proximity sensing is disclosed. One or more sensors can concurrently sense a force applied by an object on a device surface and a proximity of the object to the surface. In an example, a single sensor can sense both force and proximity via a resistance change and a capacitance change, respectively, at the sensor. In another example, multiple sensors can be used, where one sensor can sense force via either a resistance change or a capacitance change and another sensor can sense proximity via a capacitance change.
Abstract:
Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio -frequency transceiver circuitry and antenna structures. The antenna structures may contain antenna resonating elements and antenna ground elements. Antenna resonating elements may be formed from patterned conductive traces on substrates such as flex circuit substrates. Antenna ground elements may be formed from conductive device structures such as metal housing walls. Support and biasing structures such as dielectric support members and layer of foam may be used to support and bias antenna resonating elements against planar device structures. The planar device structures against which the antenna resonating elements are biased may be planar dielectric members such as transparent layers of display cover glass or other planar structures. Adhesive may be interposed between the planar structures and the antenna resonating elements.
Abstract:
A resistive force sensor with capacitive discrimination is disclosed. According to an example of the disclosure, a sensor is directed to detect resistance and capacitance in an alternating fashion, the resistance indicating a force being applied to an input area of a device, and the capacitance indicating a proximity of a body part to the input area of the device, and the detected resistance and capacitance are utilized to determine whether the body part has pressed the input area of the device.