Abstract:
Pacer activity data of a user may be managed. For example, historical activity data of a user corresponding to a particular time of a day prior to a current day may be received. Additionally, a user interface configured to display an activity goal of the user may be generated and the user interface may be provided for presentation. In some aspects, the user interface may be configured to display a first indicator that identifies cumulative progress towards the activity goal and a second indicator that identifies predicted cumulative progress towards the activity goal. The cumulative progress may be calculated based on monitored activity from a start of the current day to the particular time of the current day and the predicted cumulative progress may be calculated based on the received historical activity data corresponding to the particular time of the day prior to the current day.
Abstract:
The subject technology provides for determining that a machine learning model in a first format includes sufficient data to conform to a particular model specification in a second format, the second format corresponding to an object oriented programming language), wherein the machine learning model includes a model parameter of the machine learning model. The subject technology transforms the machine learning model into a transformed machine learning model that is compatible with the particular model specification. The subject technology generates a code interface and code for the transformed machine learning model, the code interface including code statements in the object oriented programming language, the code statements corresponding to an object representing the transformed machine learning model and the object includes an interface to update the model parameter. Further, the subject technology provides the generated code interface and the code for display in an integrated development environment (IDE), the IDE enabling modifying of the generated code interface and the code.
Abstract:
The subject technology provides for dynamic task allocation for neural network models. The subject technology determines an operation performed at a node of a neural network model. The subject technology assigns an annotation to indicate whether the operation is better performed on a CPU or a GPU based at least in part on hardware capabilities of a target platform. The subject technology determines whether the neural network model includes a second layer. The subject technology, in response to determining that the neural network model includes a second layer, for each node of the second layer of the neural network model, determines a second operation performed at the node. Further the subject technology assigns a second annotation to indicate whether the second operation is better performed on the CPU or the GPU based at least in part on the hardware capabilities of the target platform.
Abstract:
Systems and methods for proactively identifying and surfacing relevant content on an electronic device with a touch-sensitive display are disclosed herein. In one aspect, the method includes executing, on the electronic device, an application in response to an instruction from a user of the electronic device. While executing the application, the method further includes collecting usage data. The usage data at least includes one or more actions performed by the user within the application. The method also includes: automatically, without human intervention, obtaining at least one trigger condition based on the collected usage data and associating the at least one trigger condition with a particular action of the one or more actions performed by the user within the application. Upon determining that the at least one trigger condition has been satisfied, the method includes providing an indication to the user that the particular action associated with the trigger condition is available.
Abstract:
The present disclosure presents devices, methods, and computer readable medium for user interfaces for creating machine learning models. Application developers can select a machine learning template (304) from a plurality of templates appropriate for the type of data used in their application. Templates can include multiple templates for classification of images, text, sound, motion, and tabular data. A graphical user interface (300) allows for intuitive selection of training data (316), validation data (318), and integration of the trained model (314) into the application. The user interface further display a numerical score for both the training accuracy (508) and validation accuracy (510) using the test data. The application provides a live mode that allows for execution of the machine learning model on a mobile device to allow for testing the model from data from one or more of the sensors (i.e., camera or microphone) on the mobile device.
Abstract:
The subject technology provides for generating machine learning (ML) model code from a ML document file, the ML document file being in a first data format, the ML document file being converted to code in an object oriented programming language different than the first data format. The subject technology further provides for receiving additional code that calls a function provided by the ML model code. The subject technology compiles the ML model code and the additional code, the compiled ML model code including object code corresponding to the compiled ML model code and the compiled additional code including object code corresponding to the additional code. The subject technology generates a package including the compiled ML model code and the compiled additional code. Further, the subject technology sends the package to a runtime environment on a target device for execution.
Abstract:
The subject technology provides for determining that a machine learning model in a first format includes sufficient data to conform to a particular model specification in a second format, the second format corresponding to an object oriented programming language. The subject technology transforms the machine learning model into a transformed machine learning model that is compatible with the particular model specification. The subject technology generates a code interface and code for the transformed machine learning model, the code interface including code statements in the object oriented programming language, the code statements corresponding to an object representing the transformed machine learning model. Further, the subject technology provides the generated code interface and the code for display in an integrated development environment (IDE), the IDE enabling modifying of the generated code interface and the code.
Abstract:
Disclosed are systems, methods, and non-transitory computer-readable storage media for predicting a future context of a computing device. In some implementations, a context daemon can use historical context information to predict future events and/or context changes. For example, the context daemon can analyze historical context information to predict user sleep patterns, user exercise patterns, and/or other user activity. In some implementations, a context client can register a callback for a predicted future context. For example, the context client can request to be notified ten minutes in advance of a predicted event and/or context change. The context daemon can use the prediction to notify a context client in advance of the predicted event.
Abstract:
Systems and methods for proactively identifying and surfacing relevant content on an electronic device with a touch-sensitive display are disclosed herein. In one aspect, the method includes executing, on the electronic device, an application in response to an instruction from a user of the electronic device. While executing the application, the method further includes collecting usage data. The usage data at least includes one or more actions performed by the user within the application. The method also includes: automatically, without human intervention, obtaining at least one trigger condition based on the collected usage data and associating the at least one trigger condition with a particular action of the one or more actions performed by the user within the application. Upon determining that the at least one trigger condition has been satisfied, the method includes providing an indication to the user that the particular action associated with the trigger condition is available.