Abstract:
An optically transparent force sensor that may compensate for environmental effects, including, for example, variations in temperature of the device or the surroundings. In some examples, two force-sensitive layers are separated by a compliant layer. The relative electrical response of the two force-sensitive layers may be used to compute an estimate of the force of a touch that reduces the effect of variations in temperature. In some examples, piezoelectric films having anisotropic strain properties are used to reduce the effects of temperature.
Abstract:
A force sensor is disclosed. The force sensor includes a force-sensitive structure that compensates for temperature and other environmental changes through the use of a strain-sensitive element and one or more reference elements. An array of such force-sensitive structures forms a force-sensing layer.
Abstract:
One or more strain sensors can be included in an electronic device. Each strain sensor includes a strain sensitive element and one or more strain signal lines connected directly to the strain sensitive element. The strain sensor(s) are used to detect a force that is applied to the electronic device, to a component in the electronic device, and/or to an input region or surface of the electronic device. A strain sensitive element is formed or processed to have a first gauge factor and the strain signal line(s) is formed or processed to have a different second gauge factor. Additionally or alternatively, a strain sensitive element is formed or processed to have a first conductance and the strain signal line(s) is formed or processed to have a different second conductance.