Abstract:
In a video coding system (200), a common video sequence is coded multiple times to yield respective instances of coded video data. Each instance may be coded according to a set coding parameters derived from a target bit rate of a respective tier of service. Each tier may be coded according to a constraint that limits a maximum coding rate of the tier to be less than a target bit rate of another predetermined tier of service. Having been coded according to the constraint facilitates dynamic switching among tiers by a requesting client device processing resources or communication bandwidth changes. Improved coding systems to switch among different coding streams may increase quality of video streamed while minimizing transmission and storage size of such content.
Abstract:
A method and system for caching and streaming media content, including predictively delivering and/or acquiring content is provided. In the system, client devices may be communicatively coupled in a network, and may access and share cached content. Video segments making up a media stream may be selectively delivered to the clients such that a complete media stream may be formed from the different segments delivered to the different clients. Video segments may be pushed by the server to the client or requested by the client according to a prioritization scheme, including downloading: partial items on a client's subscription log, lower quality version(s) of content before higher quality version(s), higher bitrate segments before lower bitrate segments, summaries of full-length content, advertisements and splash screens common to multiple video clips.
Abstract:
A system comprises an encoder configured to compress attribute information and/or spatial for a point cloud and/or a decoder configured to decompress compressed attribute and/or spatial information for the point cloud. To compress the attribute and/or spatial information, the encoder is configured to convert a point cloud into an image based representation. Also, the decoder is configured to generate a decompressed point cloud based on an image based representation of a point cloud.
Abstract:
A method of adaptive chroma downsampling is presented. The method comprises converting a source image to a converted image in an output color format, applying a plurality of downsample filters to the converted image and estimating a distortion for each filter chose the filter that produces the minimum distortion. The distortion estimation includes applying an upsample filter, and a pixel is output based on the chosen filter. Methods for closed loop conversions are also presented.
Abstract:
A scalable coding system codes video as a base layer representation and an enhancement layer representation. A base layer coder may code an LDR representation of a source video. A predictor may predict an HDR representation of the source video from the coded base layer data. A comparator may generate prediction residuals which represent a difference between an HDR representation of the source video and the predicted HDR representation of the source video. A quantizer may quantize the residuals down to an LDR representation. An enhancement layer coder may code the LDR residuals. In other embodiments, the enhancement layer coder may code LDR-converted HDR video directly.
Abstract:
Systems and methods are presented for minimizing the suddenness and immediacy of changes to the video quality perceived by users due to bandwidth fluctuations and transitions between different bitrate streams. A method may include identifying an upcoming bitrate change in a bitstream and a nearest scene cut boundary from sync frame scene cut tags included in the bitstream. The method may include calculating whether waiting until the identified nearest scene cut boundary before changing the bitrate will cause the buffer to drop below a threshold. When the buffer is calculated to not drop below the threshold, the method may postpone the upcoming bitrate change until the identified nearest scene cut boundary.
Abstract:
Systems and methods disclosed for video compression, utilizing neural networks for predictive video coding. Processes employed combine multiple banks of neural networks with codec system components to carry out the coding and decoding of video data.
Abstract:
A video coding/decoding system codes data efficiently even when input video data exhibits changes in dynamic range. The system may map pixel values of the first frame from a dynamic range specific to the input image data to a second dynamic range that applies universally to a plurality of frames that have different dynamic ranges defined for them. The system may code the mapped pixel values to reduce bandwidth of the mapped frame data, and thereafter transmit the coded image data to a channel.
Abstract:
A video streaming method for transitioning between multiple sequences of coded video data may include receiving and decoding transmission units from a first sequence of coded video data. In response to a request to transition to a second sequence of coded video data, the method may determine whether a time to transition to the second sequence of coded video data can be reduced by transitioning to the second sequence of coded video data via an intermediate sequence of coded video data. If the time can be reduced, the method may include receiving at least one transmission unit from an intermediate sequence of coded video data that corresponds to the request to transition, decoding the transmission unit from the intermediate sequence, and transitioning from the first sequence to the second sequence via the decoded transmission unit from the intermediate sequence.