Abstract:
In some implementations, a user device can assist a user with intelligent blood pressure monitoring. For example, the user device can present notifications and/or reminders that prompt the user to take blood pressure measurements at a prescribed time or according to a prescribed schedule. The user device can automatically determine that the user should or should not take a blood pressure measurement based on the user's context and suggest an alternative time for taking the blood pressure measurement. For example, the user's context can include the user's physical and/or psychological state inferred based on sensor data, application data, and/or other detectable information. In some implementations, the user device can automatically monitor the user's blood pressure and take blood pressure measurements based on user context triggers.
Abstract:
The present invention generally relates to the measuring and monitoring of blood pressure. More specifically, embodiments may apply the theory of applanation tonometry for the measurement of blood pressure. Some embodiments provide a method for measuring mean arterial pressure. Some embodiments provide a device that may be worn by a user that may non-invasive] y measure and monitor blood pressure of a user. In some embodiments, the invention generally relates to sensor arrays for use with a wrist-worn device to measure blood pressure. Embodiments of the sensor array designs described may be configured to improve resolution by decoupling nodes of the sensor array.
Abstract:
The present invention provides non-invasive devices, methods, and systems for determining a pressure of blood within a cardiovascular system of a user, the cardiovascular system including a heart and the user having a wrist covered by skin. More particularly, the present invention discloses a variety of wrist-worn devices having a variety of sensors configured to non-invasively engage the skin on the wrist of the user for sensing a variety of user signals from the cardiovascular system of the user. Generally, approaches disclosed herein may passively track blood pressure values without any interaction required on the part of the user or may allow for on demand or point measurements of blood pressure values by having a user actively interact with the sensors of the wrist-worn device. Approaches disclosed herein further allow for absolute blood pressure values to be determined directly without the requirement for any periodic calibrations or for relative blood pressure values to be tracked so as to provide relative blood pressure indices.