Abstract:
A semiconductor laser diode with integrated heating generally includes a lasing region and a heating region integrated into the same semiconductor structure or chip. The lasing region and the heating region include first and second portions, respectively, of the semiconductor layers forming the semiconductor structure and include first and second portions, respectively, of the active regions formed by the semiconductor layers. Separate laser and heater electrodes are electrically connected to the respective lasing and heating regions for driving the respective lasing and heating regions with drive currents. The heating region may thus be driven independently from the lasing region, and heat may be conducted through the semiconductor layers from the heating region to the lasing region allowing the temperature to be controlled more efficiently.
Abstract:
A laser array mux assembly generally includes an array of laser emitters coupled to an optical multiplexer, such as an arrayed waveguide grating (AWG), with an external partial reflector after the multiplexer. Each of the laser emitters may include a gain region that emits light across a range of wavelengths including, for example, channel wavelengths in an optical communication system. The AWG filters the emitted light from each of the laser emitters at different channel wavelengths associated with each of the laser emitters. The reflector reflects at least a portion of the filtered light such that lasing occurs at the channel wavelengths of the reflected light. The laser array mux assembly may be used to generate an optical signal at a selected channel wavelength or to generate and combine optical signals at multiple channel wavelengths.
Abstract:
A wavelength-selectable laser device generally includes an array of laser emitters and a filtered external cavity for filtering light emitted from the laser emitters and reflecting different wavelengths back to each of the laser emitters such that lasing occurs at different wavelengths for each of the laser emitters. Each laser emitter includes a gain region that emits light across a plurality of wavelengths including, for example, channel wavelengths in an optical communication system. The filtered external cavity may include a dispersive optical element that receives the light from each of the laser emitters at different angles and passes or reflects different wavelengths at different angles such that only wavelengths associated with the respective laser emitters are reflected back to the respective laser emitters. By selectively emitting light from one or more of the laser emitters, one or more channel wavelengths may be selected for lasing and transmission.
Abstract:
A system for reducing clipping may be used between a multichannel RF source and a laser to reduce or correct clipping that might occur in the laser as a result of negative spikes or peaks in a multichannel RF signal. The system generally includes a clipping correction circuit that receives the multichannel RF signal and responsive to the RF signal, prevents one or more of the negative peaks in the RF signal from causing clipping. The clipping correction circuit may either detect an envelope of the RF signal and/or may detect one or more peaks in the RF signal. One or more negative peaks may be prevented from causing clipping by adjusting a bias current provided by a bias control circuit and/or by modifying the RF signal with one or more clipping correction pulses coinciding with one or more negative peaks.
Abstract:
A heated laser package generally includes a laser diode, a heating resistor and a transistor in a single laser package. The heating resistor and transistor form a heating circuit and may be located on a submount adjacent to the laser diode. The transistor is configured to control the drive current to the heating resistor and any additional heat generated by the transistor may contribute to the heating of the laser diode and thus increase the thermal efficiency of the system. The heated laser package may be used in a temperature controlled multi-channel transmitter optical subassembly (TOSA), which may be used in a multi-channel optical transceiver. The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
Abstract:
A distortion compensation circuit including a configurable delay may be used with one or more non-linear elements, such as a laser, to compensate for distortion generated by the non-linear element(s), for example, in broadband RF applications. Embodiments of the distortion compensation circuit may include a primary signal path with a configurable delay segment and a secondary signal path including at least one distortion generator. The configurable delay segment may be selectively configured to provide different delay settings to accommodate different RF loading conditions such that the delayed RF signal on the primary signal path is aligned with the distortion products generated on the secondary signal path when combined to form an RF signal with distortion compensation.
Abstract:
An edge-emitting laser (100) for generating single-longitudinal mode laser light. A semiconductor active region (120) amplifies, by stimulated emission, light in the laser cavity at a lasing wavelength. There are first and second grating sections (141,143) adjacent to the active region (120) and having first and second reflectivities respectively and a first effective index of refraction. The first and second grating sections (141,143) have a Bragg wavelength substantially equal to the lasing wavelength. A gratingless phase-shift section (142) is disposed adjacent to the active region (120) and between the first and second grating sections (141,143) and has a second index of refraction different than the first index of refraction and a length sufficient to impart a phase shift for light at the lasing wavelength sufficient to achieve longitudinal mode operation.
Abstract:
The present invention is directed to a method and VCSEL (200, 300) for improved heat removal/dispersion. The VCSEL comprises a bottom mirror, an active region disposed on the bottom mirror (203, 303), a heat spreading layer (207, 307) disposed on the active region (204, 304), and a top mirror (215, 315) disposed above the heat spreading layer. The heat spreading layer may be composed of InP.
Abstract:
A multi-channel optical transceiver includes a transmitter optical subassembly (TOSA) with a thermal arrayed waveguide grating (AWG) for multiplexing optical signals and a receiver optical subassembly (ROSA) with an athermal AWG for demultiplexing optical signals. The TOSA may also include a laser array optically coupled to the thermal AWG and a temperature control system thermally coupled to the laser array and the thermal AWG to control temperature for wavelength tuning. The temperature control system in the TOSA may include a thermoelectric cooler (TEC) that cools both the laser array and the thermal AWG. Because the athermal AWG in the ROSA is temperature independent, the ROSA does not include a TEC, thereby reducing power consumption and conserving space. The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
Abstract:
The temperature at different locations along a multiplexed laser array may be monitored by sensing temperature at two locations within a transmitter optical subassembly (TOSA) package housing the laser array. The temperature at the two locations is used to determine a temperature tilt across the laser array. Estimated temperatures may then be determined at one or more other locations along the laser array from the temperature tilt. The estimated temperature(s) may then be used to adjust the temperature proximate the other locations, for example, for purposes of tuning lasers at those locations along the laser array to emit a desired channel wavelength. The TOSA package may be used in an optical transceiver in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).