Abstract:
A method is provided, the method comprising forming an optical cavity for an optical device and forming at least one reflector for the optical cavity for the optical device, the at least one reflector having at least two sections. The method also comprises providing at least one of a tuning layer between the at least two sections of the at least one reflector and different refractive index contrasts for the at least two sections of the at least one reflector.
Abstract:
A surface-emitting laser, such as a VCSEL, for generating single-transverse mode laser light at a lasing wavelength, has a first mirror and a second mirror positioned so as to define a laser cavity therebetween, and a semiconductor active region disposed between the first and second mirrors for amplifying, by stimulated emission, light in the laser cavity at the lasing wavelength. An annular antiguide structure is disposed within the laser cavity and between the active region and one of the first and second mirrors, the annular antiguide structure comprising an antiguide material and having a central opening, the central opening comprising a second material having an index of refraction for light at the lasing wavelength smaller than that of the antiguide material, whereby the annular antiguide structure causes preferential antiguiding of higher order transverse lasing modes in the laser cavity.
Abstract:
A laser apparatus has a first mirror, a second mirror, at least a portion of which is defined by the first and second mirrors. The laser has an active region located in the laser cavity, which is capable of stimulated emission at one or more wavelengths of light. The second mirror comprises a plurality of dielectric layers arranged in parallel and having a reflectivity band with a peak reflectivity at a peak wavelength, said reflectivity band having a width of less than 1 nm at a reflectivity of 3 % less than the peak reflectivity. The laser apparatus may be a tunable laser apparatus in which the peak wavelength of the reflectivity band is adjusted, thereby adjusting the lasing wavelength of the laser. The reflectivity band may be a lasing threshold reflectivity band over which the reflectivity of the second mirror is greater than a lasing threshold reflectivity which is sufficient to permit lasing.
Abstract:
A filtered laser array assembly generally includes an array of laser emitters coupled between external modulators and an arrayed waveguide grating (AWG). Each of the laser emitters emits light across a plurality of wavelengths including, for example, channel wavelengths in an optical communication system. The AWG filters the emitted light from each of the laser emitters at different channel wavelengths associated with each of the laser emitters. Lasing cavities are formed between each of the laser emitters and a back reflector coupled to an output of the AWG such that laser output from the laser emitters is provided at the respective channel wavelengths of the reflected, filtered light. The external modulators enable high speed modulation of the laser output. The modulated laser output may then be optically multiplexed to produce an aggregate optical signal including multiple channel wavelengths.
Abstract:
An edge-emitting laser (100) for generating single-longitudinal mode laser light. A semiconductor active region (120) amplifies, by stimulated emission, light in the laser cavity at a lasing wavelength. There are first and second grating sections (141,143) adjacent to the active region (120) and having first and second reflectivities respectively and a first effective index of refraction. The first and second grating sections (141,143) have a Bragg wavelength substantially equal to the lasing wavelength. A gratingless phase-shift section (142) is disposed adjacent to the active region (120) and between the first and second grating sections (141,143) and has a second index of refraction different than the first index of refraction and a length sufficient to impart a phase shift for light at the lasing wavelength sufficient to achieve longitudinal mode operation.