Abstract:
In luminance-priority multilayer color film, one of the layers substantially matches the luminance sensitivity of the human eye. This luminance layer distinguishes from prior art color films that have a blue, a green, and a red sensitive layer. This luminance layer has the priority front position to sense light before being diffused and attenuated by other layers, giving the luminance record enhanced speed and clarity compared to prior art blue-priority color film. In another embodiment, a layered CCD sensor has a top silicon layer (1012) that is sensitive to all colors, followed by a yellow filter (1010), a second silicon layer (1008) responsive to green and red light only because of the yellow filter, a cyan filter (106), and a bottom silicon layer (1004) receiving only green light. An image from a luminance-priority color sensor inputs to a color space conversion to recover full color. In the preferred embodiment, a luminance layer on top maps to a luminance "Y" value, and underlying color sensitive layers are used in conjunction with the luminance to derive the "U" and "V" chrominance vectors of YUV color space.
Abstract:
A method of and apparatus for removing the effects of surface and near surface image (12) storage media (14) defects from a scanned image using an infrared record as a norming control. Each pixel in a visible channel of the scanned images is divided by the corresponding pixel in the associated infrared control channel after it has been altered in gain to match the degree of defect in the visible channel. By appropriately altering the gain prior to dividing the pixel information, imbalances between the visible and infrared records which would leave defect residue after the division are reduced or eliminated. To remove defect residue, a degree of nulling is established for each defect region based on the visible and infrared content in that region. In one embodiment, the articulation gain is multiplicatively applied to the logarithm of the visible and infrared records.
Abstract:
In electronic film development, a film (101) is scanned, using light, multiple times during development. The light is reflected from an emulsion containing milky undeveloped silver halide embedded with developing grains. The undeveloped halide layer has a finite depth over which photons from a light source scatter backward. This depth is within the range of the coherency length of infrared sources commonly used in electronic film development, causing coherency speckle noise in the scanned image. A prescan made after the emulsion swells, but before the silver grains develop, normalizes subsequent scans, pixel by pixel, to cancel coherency speckle and other defects.
Abstract:
A method of developing a latent image on an exposed photographic element by applying a developer solution to the photographic element and scanning the photographic element with at least two different wavelengths of electromagnetic radiation while the latent image is developing. A method of electronically developing a latent image on exposed film, and a digital film scanning apparatus for use in electronic film development are also provided.
Abstract:
An improved developer application method and apparatus for use in electronic film development, wherein the developer is applied to a photographic film using controlled, aerial deposition of one or more stream(s) of droplets of one or more developer agents or developer components such that the droplets adhere to a targeted region of the film, rather than run off, and chemically react to allow scanning of a latent image in the film as it moves through an electronic film development scan mechanism.