Abstract:
Carbon-silicon compositions including nanofibrillar carbon networks coated with porous interconnected silicon and their manufacture and use thereof are provided. Embodiments include a composite material including a nanoporous carbon-based scaffold and a silicon-based material. The nanoporous carbon-based scaffold includes a pore structure that includes a fibrillar morphology, where the silicon-based material is contained in the pore structure. The compositions find utility in various applications, including electrical energy storage electrodes and devices comprising the same.
Abstract:
Nanoporous carbon-based scaffolds or structures, and specifically carbon aerogels and their manufacture and use thereof. Embodiments include a cathode material within a lithium-air battery, where the cathode is formed of a binder-free, monolithic, polyimide-derived carbon aerogel. The carbon aerogel includes pores that improve the oxygen transport properties of electrolyte solution and improve the formation of lithium peroxide along the surface and/or within the pores of the carbon aerogel. The cathode and underlying carbon aerogel provide optimal properties for use within the lithium-air battery.
Abstract:
The present disclosure provides an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which also has favorable combustion and self-heating properties. Also provided is a method of preparing an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which has favorable combustion and self-heating properties. Further provided is a method of improving the hydrophobicity, the liquid water uptake, the heat of combustion, or the onset of thermal decomposition temperature of an aerogel composition.
Abstract:
Nanoporous carbon-based scaffolds or structures, and specifically carbon aerogels and their manufacture and use thereof. Embodiments include a sulfur-doped cathode material within a lithium-sulfur battery, where the cathode is collector-less and is formed of a binder-free, monolithic, polyimide-derived carbon aerogel. The carbon aerogel includes pores that surround elemental sulfur and accommodate expansion of the sulfur during conversion to lithium sulfide. The cathode and underlying carbon aerogel provide optimal properties for use within the lithium-sulfur battery.
Abstract:
Nanoporous carbon-based scaffolds or structures, and specifically carbon aerogels and their manufacture and use thereof are provided. Embodiments include a silicon-doped anode material for a lithium-ion battery, where the anode material includes beads of polyimide-derived carbon aerogel. The carbon aerogel includes silicon particles and accommodates expansion of the silicon particles during lithiation. The anode material provides optimal properties for use within the lithium-ion battery.
Abstract:
The present disclosure can provide an aerogel composite. The aerogel composite comprises at least one base layer having a top surface and a bottom surface, the base layer comprising a reinforced aerogel composition which comprises a reinforcement material and a monolithic aerogel framework, a first facing layer comprising a first facing material attached to the top surface of the base layer, and a second facing layer comprising a second facing material attached to the bottom surface of the base layer. At least a portion of the monolithic aerogel framework of the base layer extends into at least a portion of both the first facing layer and the second facing layer. The first facing material and the second facing material can each comprise or consist essentially of elastic fibers such as spandex, nylon, lycra, elastane, or combinations thereof.
Abstract:
Described herein are aerogel composites. The aerogel composites comprise at least one base layer having a top surface and a bottom surface, the base layer comprising a reinforced aerogel composition which comprises a reinforcement material and a monolithic aerogel framework, a first facing layer comprising a first facing material attached to the top surface of the base layer, and a second facing layer comprising a second facing material attached to the bottom surface of the base layer. At least a portion of the monolithic aerogel framework of the base layer extends into at least a portion of both the first facing layer and the second facing layer. The first facing material and the second facing material each consist essentially of fluoropolymer material.
Abstract:
Described herein are insulating structures that include at least one microporous layer including a plurality of pores, a porous layer adjacent to the microporous layer, and a monolithic aerogel structure extending through the plurality of pores of the microporous layer and through at least part of the porous layer. The microporous layer filters aerogel dust from cracked or damaged aerogel within the scaffold, slowing or preventing loss of dust from the insulating structures.
Abstract:
The present invention provides a fiber-reinforced aerogel material which can be used as insulation in thermal battery applications. The fiber-reinforced aerogel material is highly durable, flexible, and has a thermal performance that exceeds the insulation materials currently used in thermal battery applications. The fiber-reinforced aerogel insulation material can be as thin as 1 mm less, and can have a thickness variation as low as 2% or less. Also provided is a method for improving the performance of a thermal battery by incorporating a reinforced aerogel material into the thermal battery. Further provided is a casting method for producing thin fiber-reinforced aerogel materials.
Abstract:
The present invention relates to a thermal insulation board (IB) comprising at least two insulating layers (A) bonded together. At least one of the at least two insulating layers (A) comprises at least one aerogel composite material, wherein the aerogel composite material comprises at least one silica aerogel (a1), at least one polymer foam (a2) and at least one flame retardant (a3). The present invention also relates to a thermal insulation system (IS) comprising the thermal insulation board (IB). Further, it relates to a process for the production of the thermal insulation board (IB) and to the use of the thermal insulation board (IB) and of the thermal insulation system (IS) for the thermal insulation of buildings, parts and/or elements of buildings.