Abstract:
The present invention is directed toward multilayer pressure-sensitive adhesive constructions with improved convertibility and aging. In one embodiment, the multilayer constructions have one layer formed of a first adhesive composition having a first glass transition temperature, and also having a tangent delta greater than about 0.5 at 102 radians per second at 20° C., and a storage modulus greater than about 3x108 dynes/cm2 at 104 radians per second at 20° C. At least a second adhesive layer is provided in the construction, the second adhesive layer comprising a second adhesive composition with a second glass transition temperature.
Abstract:
Disclosed herein is a multilayer silicone release surface comprising a backing, a support layer on the backing, and a silicone layer of the support layer. The various layers of the multilayer release surface are deposited substantially simultaneously, as for example by a dual die or using curtain coating techniques.
Abstract:
A method and apparatus for simultaneously coating multiple thin layers of relatively viscous fluids, including pressure sensitive adhesives (PSAs), onto a moving substrate. The method of the present invention comprises the adjustment of the pressure gradients in the interface region between two confluent flows so as to avoid recirculation therein. In particular, the pressure gradient along the middle lip is regulated so as to not be excessively positive, in order to position the separating line between the top and bottom flows at a particular point on the die lips, thus enhancing stable flow. In the apparatus of the present invention, a step configuration is formed on the die lips so that the downstream lip steps away from the web in the direction of web travel. In another aspect of the invention, the pressure gradient at various locations in the bead is controlled by beveling the upstream and downstream lips. In yet a further aspect of the present invention, the viscosities of the two liquids being coated are matched at therelevant shear rates to promote good coating quality.
Abstract:
An inerted plate dryer (10) for drying solvent based coating (130) is disclosed. The dryer (10) uses two tiers of substantially parallel heating plates (170, 180) that are located not more than 10 cm apart. A moving web (120) with solvent based coating (130) is passed through the dryer (10), and runs closer to one of the heating plates (170, 180). The method of using such inerted plate dryer (10) is also disclosed.
Abstract:
A pressure-sensitive adhesive construction repulpable in paper recycling operations, comprising a facestock which is repulpable; a dispersible pressure-sensitive adhesive comprising tacky emulsion polymers dispersible in water; and a nondispersible pressure-sensitive adhesive comprising tacky emulsion polymers not dispersible in water, wherein, on the facestock, the dispersible pressure-sensitive adhesive is closer to the facestock than the nondispersible pressure-sensitive adhesive, thereby improving both adhesive performance and recyclability.
Abstract:
There is provided a laminate of a backing, a layer of permanent pressure-sensitive adhesive and a layer of removable pressure-sensitive adhesive, the latter being in contact with a release surface of a release liner or the opposed surface of the backing. The removable pressure-sensitive adhesive is provided at a coat weight of at least 10 gsm and at coat weight ratio to the permanent pressure-sensitive adhesive of at least 1:1.
Abstract:
An inerted plate dryer for drying solvent based coating is disclosed. The dryer uses two tiers of substantially parallel heating plates that are located not more than 10 cm apart. A moving web with solvent based coating is passed through the dryer, and runs closer to one of the heating plates. The method of using such inerted plate dryer is also disclosed.
Abstract:
Disclosed herein is a multilayer silicone release surface comprising a backing, a support layer on the backing, and a silicone layer of the support layer. The various layers of the multilayer release surface are deposited substantially simultaneously, as for example by a dual die or using curtain coating techniques.
Abstract:
A method of designing and the resulting thermally stable heated coating die apparatus, the die apparatus including a die having a die geometry and a heating system with heaters and temperature sensors. The method and resultant apparatus provides minimized temperature gradients, flat die lip faces in a die to roll plane and a flat die in a plane perpendicular to die flat lip faces and parallel to substrate width. The method optimizes simultaneously: die geometry, placement of the heaters, placement of temperature sensors, and shielding from operating conditions, using heat transfer and structural numerical modeling and statistical analysis while considering die functionality characteristics, minimum increment of temperature measurement and control accuracy related to minimum acceptable deviation from flatness, coating die material of construction relative to thermo-structural material properties, and desirable coating die material properties.
Abstract:
A method of designing and the resulting thermally stable heated coating die apparatus, the die apparatus including a die having a die geometry and a heating system with heaters and temperature sensors. The method and resultant apparatus provides minimized temperature gradients, flat die lip faces in a die to roll plane and a flat die in a plane perpendicular to die flat lip faces and parallel to substrate width. The method optimizes simultaneously: die geometry, placement of the heaters, placement of temperature sensors, and shielding from operating conditions, using heat transfer and structural numerical modeling and statistical analysis while considering die functionality characteristics, minimum increment of temperature measurement and control accuracy related to minimum acceptable deviation from flatness, coating die material of construction relative to thermo-structural material properties, and desirable coating die material properties.