Silicon Optical Bench OCT Probe for Medical Imaging
    3.
    发明申请
    Silicon Optical Bench OCT Probe for Medical Imaging 有权
    硅光学台面OCT医用成像探头

    公开(公告)号:US20130305513A1

    公开(公告)日:2013-11-21

    申请号:US13946214

    申请日:2013-07-19

    Abstract: An optical probe for emitting and/or receiving light within a body comprises an optical fiber that transmits and/or receives an optical signal, a silicon optical bench including a fiber groove running longitudinally that holds an optical fiber termination of the optical fiber and a reflecting surface that optically couples an endface of the optical fiber termination to a lateral side of the optical bench. The fiber groove is fabricated using silicon anisotropic etching techniques. Some examples use a housing around the optical bench that is fabricated using LIGA or other electroforming technology. A method for forming lens structure is also described that comprises forming a refractive lens in a first layer of a composite wafer material, such as SOI (silicon on insulator) wafers and forming an optical port through a backside of the composite wafer material along an optical axis of the refractive lens. The refractive lens is preferably formed using grey-scale lithography and dry etching the first layer.

    Abstract translation: 用于在体内发射和/或接收光的光学探针包括传输和/或接收光信号的光纤,包括纵向延伸的光纤槽的硅光学台,其保持光纤的光纤端接和反射 表面,其将光纤端接件的端面光学耦合到光学平台的侧面。 使用硅各向异性蚀刻技术制造纤维槽。 一些例子使用使用LIGA或其他电铸技术制造的光学平台周围的外壳。 还描述了一种用于形成透镜结构的方法,其包括在诸如SOI(绝缘体上硅)晶片的复合晶片材料的第一层中形成折射透镜,并沿着光学器件通过复合晶片材料的背面形成光学端口 折射透镜的轴线。 折射透镜优选使用灰度光刻形成并且对第一层进行干蚀刻。

    Optically pumped tunable VCSEL employing geometric isolation

    公开(公告)号:US10951007B2

    公开(公告)日:2021-03-16

    申请号:US16409272

    申请日:2019-05-10

    Abstract: An optically pumped tunable VCSEL swept source module has a VCSEL and a pump, which produces light to pump the VSCEL, wherein the pump is geometrically isolated from the VCSEL. In different embodiments, the pump is geometrically isolated by defocusing light from the pump in front of the VCSEL, behind the VCSEL, and/or by coupling the light from the pump at an angle with respect to the VCSEL. In the last case, angle is usually less than 88 degrees. There are further strategies for attacking pump noise problems. Pump feedback can be reduced through (1) Faraday isolation and (2) geometric isolation. Single frequency pump lasers (Distributed feedback lasers (DFB), distributed Bragg reflector lasers (DBR), Fabry-Perot (FP) lasers, discrete mode lasers, volume Bragg grating (VBG) stabilized lasers can eliminate wavelength jitter and amplitude noise that accompanies mode hopping.

    Tunable VCSEL with combined gain and DBR mirror

    公开(公告)号:US20210050712A1

    公开(公告)日:2021-02-18

    申请号:US16993953

    申请日:2020-08-14

    Abstract: A vertical cavity surface emitting laser (VCSEL) has a shortened overall laser cavity by combining the gain section with a distributed Bragg reflector (DBR). The overall cavity length can be contracted by placing gain structures inside the DBR. This generally applies to a number of semiconductor material systems and wavelength bands, but this scheme is very well suited to the AlGaAs/GaAs material system with strained InGaAs quantum wells as a gain medium, for example.

    Method and System for Avoiding Package Induced Failure in Swept Semiconductor Source
    7.
    发明申请
    Method and System for Avoiding Package Induced Failure in Swept Semiconductor Source 有权
    扫描半导体源避免封装引发故障的方法和系统

    公开(公告)号:US20140119397A1

    公开(公告)日:2014-05-01

    申请号:US14150122

    申请日:2014-01-08

    Abstract: Dry oxygen, dry air, or other gases such as ozone are hermetically sealed within the package of the external cavity laser or ASE swept source to avoid packaging-induced failure or PLF. PIF due to hydrocarbon breakdown at optical interfaces with high power densities is believed to occur at the SLED and/or SOA facets as well as the tunable Fabry-Perot reflector/filter elements and/or output fiber. Because the laser is an external cavity tunable laser and the configuration of the ASE swept sources, the power output can be low while the internal power at surfaces can be high leading to PIF at output powers much lower than the 50 mW.

    Abstract translation: 干氧,干燥空气或其他气体如臭氧气密封在外腔激光器或ASE扫频源的封装内,以避免包装引起的故障或PLF。 相信在SLED和/或SOA面以及可调谐法布里 - 珀罗反射器/滤波器元件和/或输出光纤处发生由于在具有高功率密度的光学接口处的烃破坏引起的PIF。 因为激光器是外部可调谐激光器和ASE扫频源的配置,所以功率输出可能很低,而表面的内部功率可能很高,导致PIF的输出功率远低于50 mW。

Patent Agency Ranking