Abstract:
An apparatus for measuring oil in water for larger parts per million (ppm) of light-to-medium weight crude oils shown. The excitation signal and the fluorescent light being detected are provided and received through a single channel within the ultrasonic transducer. The target area for measuring the ppm's of oil in water is located just inside of the measurement window to prevent interference by turbidity or other oil droplets within the fluid stream. The angle between the excitation signal and the fluorescent light as transmitted and received from the single channel is very small.
Abstract:
An apparatus for measuring oil in water for larger parts per million (ppm) of light-to-medium weight crude oils shown. The excitation signal and the fluorescent light being detected are provided and received through a single channel within the ultrasonic transducer. The target area for measuring the ppm's of oil in water is located just inside of the measurement window to prevent interference by turbidity or other oil droplets within the fluid stream. The angle between the excitation signal and the fluorescent light as transmitted and received from the single channel is very small.
Abstract:
The method and apparatus as shown in the present invention is to measure the absorption of light by material contained in a liquid. A transmitted signal is sent through a measurement window to a measurement chamber to a target point just inside the measurement window. The reflected signal indicates the amount of light absorbed by a material in the measurement chamber which allows for the amount of materials in a liquid to be determined. Adjustments are made through an optical block and a light control molecule to correct for variations in light intensity.