Abstract:
A device for analysing the status of a biological entity. The device (10) comprises a substantially transparent base substrate (11) having a recess defined therein by at least two opposing lateral walls and a base wall, a substantially transparent filler member (14) having at least a portion thereof occupying the recess, a substantially transparent separation layer (12) disposed between the filler member and the base substrate, and a channel (16) defined in the filler member, wherein the channel comprises an inlet and an outlet, the inlet being arranged on a first lateral wall of the filler member, and the outlet being arranged on a second lateral wall of the filler member, said first lateral wall of the filler member being arranged in opposing relationship with the second lateral wall of the filler member, and at least a portion of the first and the second lateral walls of the filler member being at least substantially perpendicular to the opposing lateral walls defining the recess.
Abstract:
A method of fabricating a sensor comprising a nanowire on a support substrate with a first semiconductor layer arranged on the support substrate is disclosed. The method comprises forming a fin structure from the first semiconductor layer, the fin structure comprising at least two supporting portions and a fin portion arranged there between; oxidizing at least the fin portion of the fin structure thereby forming the nanowire being surrounded by a first layer of oxide; and forming an insulating layer above the supporting portions; wherein the supporting portions and the first insulating layer form a microfluidic channel. A nanowire sensor is also disclosed. The nanowire sensor comprises a support substrate, a semiconducting fin structure arranged on the support substrate, the fin structure comprising at least two semiconducting supporting portions and a nanowire arranged there between; and a first insulating layer on a contact surface of the supporting portions; wherein the supporting portions and the first insulating layer form a microfluidic channel.
Abstract:
A method of fabricating a sensor comprising a nanowire on a support substrate with a first semiconductor layer arranged on the support substrate is disclosed. The method comprises forming a fin structure from the first semiconductor layer, the fin structure comprising at least two supporting portions and a fin portion arranged there between; oxidizing at least the fin portion of the fin structure thereby forming the nanowire being surrounded by a first layer of oxide; and forming an insulating layer above the supporting portions; wherein the supporting portions and the first insulating layer form a microfluidic channel. A nanowire sensor is also disclosed. The nanowire sensor comprises a support substrate, a semiconducting fin structure arranged on the support substrate, the fin structure comprising at least two semiconducting supporting portions and a nanowire arranged there between; and a first insulating layer on a contact surface of the supporting portions; wherein the supporting portions and the first insulating layer form a microfluidic channel.
Abstract:
A device for analysing the status of a biological entity. The device (10) comprises a substantially transparent base substrate (11) having a recess defined therein by at least two opposing lateral walls and a base wall, a substantially transparent filler member (14) having at least a portion thereof occupying the recess, a substantially transparent separation layer (12) disposed between the filler member and the base substrate, and a channel (16) defined in the filler member, wherein the channel comprises an inlet and an outlet, the inlet being arranged on a first lateral wall of the filler member, and the outlet being arranged on a second lateral wall of the filler member, said first lateral wall of the filler member being arranged in opposing relationship with the second lateral wall of the filler member, and at least a portion of the first and the second lateral walls of the filler member being at least substantially perpendicular to the opposing lateral walls defining the recess.