Abstract:
An apparatus and method are provided for configuring a communication link. The apparatus has a plurality of antenna elements to support RF communication over a communication link using a plurality of frequency channels, a plurality of RF processing circuits, and configuration circuitry to apply a selected configuration from a plurality of different configurations, where each configuration identifies which RF processing circuit each antenna element is coupled to, and which frequency channel is allocated to each RF processing circuit. The configuration circuitry is arranged to employ a reinforcement learning process in order to dynamically alter which of the plurality of different configurations to apply as a currently selected configuration. The reinforcement learning process comprises maintaining a future rewards record having a plurality of entries, where each entry maintains, for an associated combination of link state and configuration, an estimated future rewards indication determined using a discounted rewards mechanism. A selection policy is employed to select a configuration for a current link state, and then a new reward is observed that is dependent on how the selected configuration alters a chosen performance metric for the communication link. The estimated future rewards indication in the associated entry is then updated in dependence on the new reward. The updating comprises, when the associated entry is first encountered following a reset event, the storing in the associated entry of a predicted estimated future rewards indication generated by assuming, when using the discounted rewards mechanism, that all rewards that will be used in future to update the estimated future rewards indication in the associated entry will have the same value as the new reward.
Abstract:
An antenna apparatus for use in a wireless network and method of operating such an antenna apparatus are provided. A wireless network controller provides a configuration of such an antenna apparatus, a method of operating such a wireless network controller, and a resulting wireless network. The antenna apparatus comprises a directional antenna and a uniform circular antenna array. The directional antenna can be rotatably positioned about an axis with respect to a fixed mounting portion of the apparatus in dependence on wireless signals received by the antenna array. The antenna array allows the antenna apparatus to receive wireless signals isotropically and thus to accurately monitor the wireless signal environment in which it finds itself. The antenna apparatus can thus monitor and characterise incoming signals, both from external interference sources and from other network nodes, and the directional antenna can then be positioned in rotation to improve the network throughput.
Abstract:
An antenna apparatus for use in a wireless network and method of operating such an antenna apparatus are provided. A wireless network controller provides a configuration of such an antenna apparatus, a method of operating such a wireless network controller, and a resulting wireless network. The antenna apparatus comprises a directional antenna and a uniform circular antenna array. The directional antenna can be rotatably positioned about an axis with respect to a fixed mounting portion of the apparatus in dependence on wireless signals received by the antenna array. The antenna array allows the antenna apparatus to receive wireless signals isotropically and thus to accurately monitor the wireless signal environment in which it finds itself. The antenna apparatus can thus monitor and characterise incoming signals, both from external interference sources and from other network nodes, and the directional antenna can then be positioned in rotation to improve the network throughput.
Abstract:
An antenna apparatus for use in a wireless network and method of operating such an antenna apparatus are provided. A wireless network controller provides a configuration of such an antenna apparatus, a method of operating such a wireless network controller, and a resulting wireless network. The antenna apparatus comprises a directional antenna and a uniform circular antenna array. The directional antenna can be rotatably positioned about an axis with respect to a fixed mounting portion of the apparatus in dependence on wireless signals received by the antenna array. The antenna array allows the antenna apparatus to receive wireless signals isotropically and thus to accurately monitor the wireless signal environment in which it finds itself. The antenna apparatus can thus monitor and characterize incoming signals, both from external interference sources and from other network nodes, and the directional antenna can then be positioned in rotation to improve the network throughput.
Abstract:
Antenna apparatus and a method of operating the antenna apparatus are provided. The antenna apparatus comprises a directional antenna comprising antenna array components, RF chains connected to the antenna array components, and a transceiver connected to the RF chains. Each RF chain comprises in sequence: a switching stage having switching circuitry selectively to connect an antenna array component, a phase shifting stage having phase shifting circuitry, and a summation stage having summation circuitry, wherein at least two of the RF chains share phase shifting circuitry and at least two of the RF chains share summation circuitry. The at least partial sharing of the RF chains, an in particular of the phase shifting circuitry provides a compact and cheap antenna apparatus, which is nonetheless capable of degree of configurability in direction and beam pattern to enable it to operate in a busy and changing environment.
Abstract:
Antenna apparatus and a method of operating the antenna apparatus are provided. The antenna apparatus comprises a directional antenna comprising antenna array components, RF chains connected to the antenna array components, and a transceiver connected to the RF chains. Each RF chain comprises in sequence: a switching stage having switching circuitry selectively to connect an antenna array component, a phase shifting stage having phase shifting circuitry, and a summation stage having summation circuitry, wherein at least two of the RF chains share phase shifting circuitry and at least two of the RF chains share summation circuitry. The at least partial sharing of the RF chains, an in particular of the phase shifting circuitry provides a compact and cheap antenna apparatus, which is nonetheless capable of degree of configurability in direction and beam pattern to enable it to operate in a busy and changing environment.