Abstract:
An RF duplexer waveguide filter module for the transmission and filtering of TX and RX RF signals comprising a substrate with TX and RX filter assemblies mounted thereon. One or both of the TX and RX filter assemblies comprises an RF waveguide filter assembly including a plurality of blocks of dielectric material coupled together in a side-by-side relationship. Each of the blocks of dielectric material defines at least one slit and at least one internal RF signal transmission window. One or both of the end blocks defines a step and a through-hole terminating in an opening in the step. In one embodiment, the RF duplexer waveguide filter module additionally comprises an RF antenna waveguide filter extending between and coupling the TX and RX filter assemblies to an antenna RF signal transmission line.
Abstract:
An RF duplexer waveguide filter module for the transmission and filtering of TX and RX RF signals comprising a substrate with TX and RX filter assemblies mounted thereon. One or both of the TX and RX filter assemblies comprises an RF waveguide filter assembly including a plurality of blocks of dielectric material coupled together in a side-by-side relationship. Each of the blocks of dielectric material defines at least one slit and at least one internal RF signal transmission window. One or both of the end blocks defines a step and a through-hole terminating in an opening in the step. In one embodiment, the RF duplexer waveguide filter module additionally comprises an RF antenna waveguide filter extending between and coupling the TX and RX filter assemblies to an antenna RF signal transmission line.
Abstract:
A resonator/filter adapted for direct surface mounting to the surface of a printed circuit board. The resonator/filter comprises a block of dielectric material including at least one resonator through-hole extending therethrough and respective top, bottom and side surfaces defining respective regions of dielectric material covered with conductive material. The top block surface defines at least a first conductive region. A second conductive region on the bottom surface of the block defines an input/output contact which allows the filter to be mounted on the board with the bottom filter surface seated thereon, thus providing a direct ground contact between the board and the resonator through-hole for improved attenuation performance particularly at higher frequencies. A plurality of transmission line embodiments electrically interconnect the first and second conductive regions.
Abstract:
A dielectric waveguide filter which, in one embodiment, is comprised of a plurality of monoblocks coupled together in a side-by-side relationship. In one embodiment, the waveguide filter includes two end monoblocks and two interior monoblocks each defining two resonators. First and second RF signal input/output electrodes are defined on the two end monoblocks. In one embodiment, a direct RF signal transmission path is defined in part by the combination of the resonators, RF signal transmission bridges on each of the monoblocks that interconnect the resonators on each of the monoblocks, and RF signal transmission windows between and interconnecting the resonators of adjacent monoblocks. In one embodiment, alternate or cross-coupling RF signal transmission paths are defined by external RF signal transmission lines that extend between adjacent monoblocks.
Abstract:
A resonator/filter adapted for direct surface mounting to the surface of a printed circuit board. The resonator/filter comprises a block of dielectric material including at least one resonator through-hole extending therethrough and respective top, bottom and side surfaces defining respective regions of dielectric material covered with conductive material. The top block surface defines at least a first conductive region. A second conductive region on the bottom surface of the block defines an input/output contact which allows the filter to be mounted on the board with the bottom filter surface seated thereon, thus providing a direct ground contact between the board and the resonator through-hole for improved attenuation performance particularly at higher frequencies. A plurality of transmission line embodiments electrically interconnect the first and second conductive regions.
Abstract:
A monoblock ceramic triplexer for connection to an antenna, a transmitter, a receiver and a GPS receiver is described. The triplexer includes a solid, monolithic core of dielectric material defining a plurality of through-holes extending between top and bottom surfaces. The surfaces of the core present a pattern of metallized and unmetallized areas including a relatively expansive metallized area, a transmitter coupling area, first and second receiver coupling areas spaced, an antenna coupling metallized area and an unmetallized area circumscribing at least one of the openings on the top surface. The antenna coupling metallized area includes a top surface extension towards the first receiver coupling area, and the expanded metallized area includes a top surface extension between adjacent resonator through-holes.
Abstract:
A dielectric waveguide filter comprising a block of dielectric material covered with an exterior layer of conductive material. A plurality of stacked resonators are defined in the block of dielectric material by one or more slots in the block of dielectric material and an interior layer of conductive material that separates the stacked resonators. First and second RF signal transmission windows in the interior layer of conductive material provide for both direct and cross-coupling RF signal transmission between the stacked resonators. In one embodiment, the waveguide filter is comprised of separate blocks of dielectric material each covered with an exterior layer of conductive material, each including one or more slots defining a plurality of resonators, and coupled together in a stacked relationship.
Abstract:
A dielectric waveguide filter comprising a block of dielectric material covered with an exterior layer of conductive material. A plurality of stacked resonators are defined in the block of dielectric material by one or more slots in the block of dielectric material and an interior layer of conductive material that separates the stacked resonators. First and second RF signal transmission windows in the interior layer of conductive material provide for both direct and cross-coupling RF signal transmission between the stacked resonators. In one embodiment, the waveguide filter is comprised of separate blocks of dielectric material each covered with an exterior layer of conductive material, each including one or more slots defining a plurality of resonators, and coupled together in a stacked relationship.
Abstract:
A duplexing filter 10 suitable for use in a mobile communication system. The filter 10 has a core of dielectric material 12 with several through holes 30 that define resonators 25. The core 12 has metallized surfaces 16, 18, 20, 22 and 24 except for the top surface 14. Several metallized resonator pads 60 surround each of the through holes 30 on the top surface 14. A metallized serpentine region 61, 62 extends from one or more of the resonator pads 60 toward a side surface 18 of the core 12. The metallized serpentine region 61, 62 causes attenuation of a third harmonic frequency.
Abstract:
A dielectric wave guide filter comprising a block of dielectric material defining a plurality of resonators separated by an interior layer of conductive material. A first direct path for the transmission of an RF signal is defined by the plurality of resonators. An external substrate is coupled to an exterior surface of the block of dielectric material and defines a pair of RF signal input/output transmission vias filled with a conductive material and an interior RF signal transmission line extending between and interconnecting the pair or RF signal input/output transmission vias and providing an indirect cross-coupling path for the RF signal between two of the resonators separated by the interior layer of conductive material.