Abstract:
An earphone comprising an earphone housing having a wall comprising (1) a front side that joins (2) an end portion in which a primary sound output opening is formed, which joins (3) a face portion in which a secondary output opening is formed, which joins (4) a back side which joins the front side and encloses a driver, wherein the primary output opening is dimensioned to output sound generated by a diaphragm of the driver contained within the earphone housing into the ear and the secondary output opening is dimensioned to vent the ear to a surrounding environment, and wherein the primary output opening and the secondary output opening face different directions.
Abstract:
An earphone comprising an earphone housing having a wall comprising (1) a front side that joins (2) an end portion in which a primary sound output opening is formed, which joins (3) a face portion in which a secondary output opening is formed, which joins (4) a back side which joins the front side and encloses a driver, wherein the primary output opening is dimensioned to output sound generated by a diaphragm of the driver contained within the earphone housing into the ear and the secondary output opening is dimensioned to vent the ear to a surrounding environment, and wherein the primary output opening and the secondary output opening face different directions.
Abstract:
An earphone comprising an earphone housing having a wall comprising (1) a front side that joins (2) an end portion in which a primary sound output opening is formed, which joins (3) a face portion in which a secondary output opening is formed, which joins (4) a back side which joins the front side and encloses a driver, wherein the primary output opening is dimensioned to output sound generated by a diaphragm of the driver contained within the earphone housing into the ear and the secondary output opening is dimensioned to vent the ear to a surrounding environment, and wherein the primary output opening and the secondary output opening face different directions.
Abstract:
An earphone comprising an earphone housing having a wall comprising (1) a front side that joins (2) an end portion in which a primary sound output opening is formed, which joins (3) a face portion in which a secondary output opening is formed, which joins (4) a back side which joins the front side and encloses a driver, wherein the face portion and the front side form a tapered portion of the earphone housing that is dimensioned to be inserted into, and contact, an ear of a wearer, wherein the primary output opening is dimensioned to output sound generated by a diaphragm of the driver contained within the earphone housing into the ear, the secondary output opening is dimensioned to vent the ear to a surrounding environment, and wherein the primary output opening and the secondary output opening face different directions and are positioned over a sound output face of the driver.
Abstract:
Apparatuses, methods, computer readable mediums, and systems are described for combined dynamic processing and speaker protection for minimizing distortion in audio playback. In some embodiments, at least one compressed audio signal is received, at least one threshold for a speaker is retrieved, modifications to audio signal compression are determined based on the at least one compressed audio signal and the at least one threshold, information embodying the modifications is transmitted to a dynamic processor, and using the dynamic processor, at least one modified compressed audio signal is produced for the speaker based on the information.
Abstract:
A micro speaker having a capacitive sensor to sense a motion of a speaker diaphragm, is disclosed. More particularly, embodiments of the micro speaker include a conductive surface of a diaphragm facing conductive surfaces of several capacitive plate sections across a gap. The diaphragm may be configured to emit sound forward away from a magnet of the micro speaker, and the capacitive plate sections may be supported on the magnet behind the diaphragm. In an embodiment, the gap provides an available travel for the diaphragm, which may be only a few millimeters. A sensing circuit may sense capacitances of the conductive surfaces to limit displacement of the diaphragm to within the available travel.
Abstract:
A thermal control module computes an estimate of a temperature of a speaker, based on an audio signal that is driving the speaker, and computes a gain that is applied to attenuate the audio signal to prevent overheating of the speaker. Thermal control module computes an adapted impedance, being an estimate of the speaker's impedance including its DC resistance, and uses it to compute the temperature estimate. The adapted impedance is obtained from a normal adaptation process when a measured voltage of the speaker is above a threshold, and a decay process when the measured voltage is below the threshold. Other embodiments are also described.
Abstract:
Disclosed are systems and methods for automatically transitioning between communication modes of wearable audio output devices based solely on acoustic analysis. The audio output devices may operate in one of three electroacoustic modes. In the transparency mode, an audio output device may pass through the speech signal of a nearby user. In the peer-to-peer mode, the audio output device may establish a direct low-latency radio frequency (RF) link to another audio output device. In the telephony mode, the audio output device may communicate with another audio output device using networked telephony. The disclosed methods and systems perform acoustic analysis of the near-field speech signal of a local wearer of the audio output device and the far-field speech signal of a remote talker to determine the best mode for the audio output device to use and to seamlessly transition between the modes as the acoustic environment between the wearers changes.
Abstract:
An earphone comprising: an earphone housing having a cap portion and a body portion that interlock with one another to enclose a driver, the driver having a front face that outputs sound waves and a back face opposite the front face, the cap portion defines a first chamber coupled to the front face of the driver and the body portion defines a second chamber coupled to the back face of the driver, a first opening formed through the cap portion; a first port and a second port formed through the body portion and open to a surrounding environment; and a mesh coupled to the first opening, the first port or the second port.
Abstract:
An earphone comprising: an earphone housing having a cap portion and a body portion that interlock with one another to enclose a driver, the driver having a front face that outputs sound waves and a back face opposite the front face, the cap portion defines a first chamber coupled to the front face of the driver and the body portion defines a second chamber coupled to the back face of the driver, a first opening formed through the cap portion; a first port and a second port formed through the body portion and open to a surrounding environment; and a mesh coupled to the first opening, the first port or the second port.