Abstract:
An electronic device provides, to a display, data to present a user interface that includes a plurality of user interface objects, and a current focus on a first user interface object. While the display is presenting the user interface, the electronic device receives an input that corresponds to a movement of a contact across on a touch-sensitive surface. The electronic device, in response to receiving the input and in accordance with a determination that a first axis is a dominant axis, moves the current focus along the first axis by a first amount and along the second axis by a second amount. The amount of movement of the current focus along the second axis is reduced to a first non-zero amount by a scaling factor that is based on one or more inputs received prior to receiving the input.
Abstract:
A method and apparatus for allowing applications to access edited image data from an image editing application are disclosed herein. When the user desires to export edited images, the user causes the image editing application to display a plug-in user interface (UI). The plug-in UI may allow the user to enter exporting parameters, although this is not required. After the user selects an “export” button in the plug-in UI, the image editing application confirms with the plug-in on an image-by-image basis which of the images should be exported. The image editing application then generates an export version of the image. If necessary, the image editing application applies image adjustments to the master image to generate the export version. The image editing application then makes the export version available to the plug-in.
Abstract:
An electronic device provides, to a display, data to present a user interface that includes a plurality of user interface objects, and a current focus on a first user interface object. While the display is presenting the user interface, the electronic device receives an input that corresponds to a movement of a contact across on a touch-sensitive surface. The electronic device, in response to receiving the input and in accordance with a determination that a first axis is a dominant axis, moves the current focus along the first axis by a first amount and along the second axis by a second amount. The amount of movement of the current focus along the second axis is reduced to a first non-zero amount by a scaling factor that is based on one or more inputs received prior to receiving the input.
Abstract:
An electronic device provides, to a display, data to present a user interface that includes a first group of user interface objects and a second group of user interface objects. A current focus is on a first user interface object of the first group of user interface objects. The device receives an input that corresponds to a request to move the current focus to a user interface object in the second group of user interface objects; determines a projection of the first user interface object based on a direction of the input; identifies one or more user interface objects that overlap with the projection of the first user interface object in the direction on the display that corresponds to the direction of the input; and moves the current focus to a second user interface object of the one or more identified user input objects.
Abstract:
A method and apparatus for allowing applications to access edited image data from an image editing application are disclosed herein. When the user desires to export edited images, the user causes the image editing application to display a plug-in user interface (UI). The plug-in UI may allow the user to enter exporting parameters, although this is not required. After the user selects an “export” button in the plug-in UI, the image editing application confirms with the plug-in on an image-by-image basis which of the images should be exported. The image editing application then generates an export version of the image. If necessary, the image editing application applies image adjustments to the master image to generate the export version. The image editing application then makes the export version available to the plug-in.
Abstract:
An electronic device provides, to a display, data to present a user interface with a plurality of user interface objects, and a current focus is on a first user interface object. The device receives an input corresponding to movement of a contact across a touch-sensitive surface. The movement includes first and second components each corresponding to first and second axes on the display. The device moves the current focus, along the first and second axes by amounts based on magnitudes of the first and second components. The amount of movement of the current focus along a non-dominant axis is reduced relative to the amount of movement of the current focus along a dominant axis by a scaling factor that is based on a rate of movement of the contact.
Abstract:
An electronic device provides, to a display, data to present a user interface that includes a plurality of user interface objects, and a current focus on a first user interface object of the plurality of user interface objects. While the display is presenting the user interface, the electronic device receives from the user input device an input that corresponds to a gesture detected on the touch-sensitive surface of the user input device. The gesture includes a movement of a contact across the touch-sensitive surface followed by a lift-off of the contact from the touch-sensitive surface. The electronic device, in accordance with a determination that the gesture satisfies movement criteria, provides, to the display, data to move the current focus in the user interface from the first user interface object to a second user interface object of the plurality of user interface objects.
Abstract:
An electronic device provides, to a display, data to present a user interface that includes a first group of user interface objects and a second group of user interface objects. A current focus is on a first user interface object of the first group of user interface objects. The device receives an input that corresponds to a request to move the current focus to a user interface object in the second group of user interface objects; determines a projection of the first user interface object based on a direction of the input; identifies one or more user interface objects that overlap with the projection of the first user interface object in the direction on the display that corresponds to the direction of the input; and moves the current focus to a second user interface object of the one or more identified user input objects.
Abstract:
Systems and methods are disclosed for authoring, deploying, and executing layer stack images for applications directed to a plurality of target devices. Resources to implement the layer stack images are compiled into an asset catalog database for each image in each layer stack image for each target device. Derivative resource products, such as a flattened version of the layer stack images and a “blurred” version of layer stack images can be generated and stored in the asset catalog at compile and build time. Three-dimensional effects implemented using the layer stack images can be implemented using an application programming interface that accepts legacy two dimensional images can be used to receive the layer stack images. An platform framework implements logic that detects the type of image requested via the API is a layer stack image or a conventional flat image. Third party layer stack images can be received and displayed at run-time or compile time. Images that make up a layer stack image can be locally-stored, externally referenced, or both. A layer stack image can, itself, refer to other layer stack images.
Abstract:
An electronic device provides, to a display, data to present a user interface that includes a plurality of user interface objects, and a current focus on a first user interface object. While the display is presenting the user interface, the electronic device receives an input that corresponds to a movement of a contact across on a touch-sensitive surface. The electronic device, in response to receiving the input and in accordance with a determination that a first axis is a dominant axis, moves the current focus along the first axis by a first amount and along the second axis by a second amount. The amount of movement of the current focus along the second axis is reduced to a first non-zero amount by a scaling factor that is based on one or more inputs received prior to receiving the input.