Abstract:
Systems and methods for through-display imaging. An optical imaging sensor (302) is positioned at least partially behind a display (304) and is configured to emit visible wavelength light at least partially through the display to illuminate an object, such as a fingerprint (308) or a retina, in contact with or proximate to an outer surface of the display (306). Surface reflections from the object traverse the display stack and are received and an image of the object can be assembled.
Abstract:
A liquid crystal display may have main column spacers and subspacer column spacers. The column spacers may have cross shapes formed from overlapping perpendicular rectangular column spacer portions respectively located on a color filter layer and a thin-film transistor layer. The column spacers may have a hybrid configuration in which some of the rectangular portions on the thin- film transistor layer extend vertically and some extend horizontally. Column spacers may be formed from planarization layer material, may be formed from locally thickened portions of a planarization layer, and may have circular shapes.
Abstract:
An optical system is described. The optical system may include a sensor which may be in a mobile device. The optical system may use the same light source for imaging the display and for providing light to a sensor or sensor device. The optical system may be configured so that randomly polarized light will exit the device for viewing so that a user may view the display in any rotated orientation while wearing polarized eyewear. The optical system may further be configured to mitigate reflections in the mobile device from ambient light entering the system and from reflected and backscattered light from cross-contaminating the imaging light of the display.
Abstract:
A layer of liquid crystal material may be interposed between display layers. The display layers may include thin-film transistor circuitry having subpixel electrodes for applying electric fields to subpixel portions of the layer of liquid crystal material. Subpixels of different colors may have different shapes and may have different liquid crystal layer thicknesses. These subpixel differences may be configured to slow the switching speed of subpixels of a certain color relative to other subpixels to reduce color motion blur when an object is moved across a black or colored background. The subpixels may have chevron shapes. Subpixels of a first color may have chevron shapes that are less bent than subpixels of second and third colors. In configurations with varying liquid crystal layer thicknesses, the subpixels of the first color may have thicker liquid crystal layers than the subpixels of the second and third colors.