Abstract:
System, apparatus and method for selecting one or more synchronization stations, or masters, in a peer-to-peer communication environment. Synchronization (or sync) stations broadcast periodic synchronization frames to advertise future availability windows, during which devices rendezvous for discovery and communication. Devices that can act as sync stations advertise preference values, which indicate their preference or suitability for the role. All devices execute the same algorithm to sort the preference values and identify a root sync station and any number of branch sync stations; leaf devices synchronize with the root or a branch sync station. This passive synchronization scheme allows individual devices to conserve power, because they need not actively discover other devices and services, and can power off their radios for periods of time without sacrificing discoverability. Synchronization and peer-to-peer communication as provided herein coexist with other device demands, such as Bluetooth® operations and infrastructure-based communications.
Abstract:
An apparatus comprises a memory and at least one processor in communication with the memory. The at least one processor is to detect, during a discovery window, a neighboring client station that is to perform peer-to-peer Wi-Fi communication via a Neighbor Awareness Networking (NAN) protocol and establish, via a negotiation after the discovery window, a datapath with the neighboring client station, wherein the negotiation includes an exchange of NAN data path setup attributes in parallel with an exchange of encryption cipher attributes and the encryption cipher is based on a simultaneous authentication of equals (SAE) protocol. The SAE protocol can be used to generate key material to encrypt the datapath.
Abstract:
One or more client stations operate to configure Neighbor Awareness Networking (NAN) - direct communication with neighboring client stations, i.e., direct communication between the client stations without utilizing an intermediate access point. Embodiments of the disclosure relate to NAN datapath scheduling and NAN pre-datapath operation setup and scheduling. The NAN datapath embodiments described herein provide a mechanism through which devices can communicate and provide services. Aspects of the datapath development include datapath scheduling, including datapath setup and scheduling attributes, as well as pre-datapath operation triggering and scheduling. Scheduling may include determination of a type of datapath, including paging and synchronized datapaths. NAN data cluster base schedules may be scheduled as equal-sets or subsets of datapath schedules. The datapath model may be implemented for unicast and multicast communication between client stations. A negotiation window may be arranged between an apparatus an a client device in order to configure direct Wi-Fi communications without involving a Wi-Fi access point. A first client station may request a connection to a neighboring client station if the neighboring client station indicates availability of one or more services desired by the first client station.
Abstract:
A system, apparatus and method for synchronizing devices in a peer-to-peer communication environment. Devices select a master to facilitate their synchronization, and rendezvous according to a schedule of availability windows broadcast by the master. Devices may attend some or all of the availability windows, during which they may send and receive unicast and/or multicast messages. Individual devices conserve power by being automatically synchronized instead of having to individually discover other devices and services, and can power off their radios without sacrificing discoverability. Synchronization and peer-to-peer communication as provided herein coexists with other device demands, such as Bluetooth® operations, infrastructure-based communications and so on.
Abstract:
In one set of embodiments, one or more wireless stations operate to configure Neighbor Awareness Networking (NAN) - direct communication with neighboring wireless stations, i.e., direct communication between the wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to reciprocating service between two or more wireless stations. The reciprocating service embodiments described herein provide a mechanism through which devices can participate in a same service instant.
Abstract:
A system, apparatus, and method are provided for operating a peer-to-peer communication environment. The environment includes one or more clusters of peer devices, wherein devices in a single cluster are organized into a logical hierarchy under an anchor master (at the root of the hierarchy) and any number of synchronization masters; other devices are non-master devices. Synchronization parameters established by the anchor master and disseminated throughout the hierarchy enable the clusters' devices to rendezvous, discover peers and services, and communicate among themselves. The anchor master may adjust the synchronization parameters to avoid conflict with another hierarchy. Each device issues beacons (e.g., heartbeats, discovery beacons) that identify the number of devices synchronized with the reporting device, which allows the anchor master to calculate the total number of cluster members. Devices may also report details of a neighboring cluster via a beacon or some other communication.
Abstract:
Embodiments described herein relate to a system and method for providing flexible receiver configuration in wireless communication systems, such as 802.11 WLAN systems. In one embodiment, a wireless device may transmit a first data frame including first configuration information specifying a first configuration of the receiver to notify a remote device that the wireless device intends to configure its receiver according to the first configuration. After receiving an acknowledgement frame confirming the first configuration information, the wireless device may configure the receiver according to the first configuration. In another embodiment, a wireless device may receive a first data frame including first configuration information and further including a request that the wireless device configure its receiver according to the first configuration. In response, the wireless device may configure the receiver according to the first configuration. In either case, the wireless device may receive subsequent communications according to the first configuration.
Abstract:
In one set of embodiments, one or more client stations operate to configure Neighbor Awareness Networking (NAN)—direct communication with neighboring client stations, i.e., direct communication between the client stations without utilizing an intermediate access point. Embodiments of the disclosure relate to NAN datapath scheduling and NAN pre-datapath operation setup and scheduling. The NAN datapath embodiments described herein provide a mechanism through which devices can communicate and provide services. Aspects of the datapath development include datapath scheduling, including datapath setup and scheduling attributes, as well as pre-datapath operation triggering and scheduling. Scheduling may include determination of a type of datapath, including paging and synchronized datapaths. NAN data cluster base schedules may be scheduled as equal-sets or subsets of datapath schedules. The datapath model may be implemented for unicast and multicast communication between client stations.