Abstract:
An electronic device such as a desktop computer may have a housing. The housing may have conductive portions such as metal walls and metal support structures that support the housing. The walls may be assembled to form a box-shaped housing having corners. The support structures may form legs at the corners of the housing. Antennas may be formed in the housing to support communications such as wireless local area network communications. The antennas may be slot antennas formed from openings in the legs. Radio-frequency transceiver circuitry in the housing may be used to transmit and receive radio-frequency communications. The radio-frequency transceiver circuitry may be coupled to the antenna using a transmission line. Threaded radio-frequency connectors or other connectors may be used in coupling the transmission line to a slot antenna.
Abstract:
An electronic device may have metal structures such as metal electronic device housing structures and other conductive structures. The conductive structures may have a slot or other opening. An antenna may be formed from the conductive structures. Control circuitry in the electronic device may receive input from input-output devices and may use the input-output devices to provide a user with output. The control circuitry may be coupled to a radio-frequency transceiver that is used to transmit and receive wireless communications. The radio-frequency transceiver may be coupled to the antenna using a transmission line. The transmission line may have a radio-frequency connector that is coupled to a radio-frequency connector on an antenna feed bolt. The antenna feed bolt may have a shaft that spans the opening in the conductive structures and may be coupled to antenna feed terminals on opposing sides of the opening. The antenna may have a tuning bolt.
Abstract:
Computer modules that can have a high-capacity, can simplify the design of a computer system housing the modules, can utilize system resources in a highly configurable manner, can provide a variety of functionality, and can be readily inserted into, and removed from, a computer system.
Abstract:
A housing for an electronic device can include a body having an exterior surface and a second surface disposed opposite the exterior surface at least partially defining an interior volume, the body defining a first repeating pattern of apertures extending from the exterior surface to the second surface. The housing can also include a component defining a second repeating pattern of apertures, the component positioned adjacent to the second surface. The first repeating pattern of apertures and the second repeating pattern of apertures can combine to define an open area of at least about 70%.
Abstract:
Tight bend-radius cable structures and methods for making the same are disclosed. Tight bend-radius cable structures can include a cable electrically and physically coupled to a connector. An inner strain-relief member can be coupled to the cable and the connector to provide protection and strain relief for connection between the connector and the cable. The cable can then be manipulated into a final configuration, and an outer strain-relief member can be coupled to the cable and connector to hold the cable in its final configuration.
Abstract:
A display device having a flexured element. More particularly, the display device may incorporate a cover glass with one or more flexure bearing sections. The flexure bearing may permit the cover glass to flex and/or bend in response to stresses or strains while still maintaining contact with an attachment point. If the attachment points have different heights, for example, the cover glass may flex at the flexure bearing, thereby permitting the portion of the cover glass between the attachment points to maintain a relatively planar alignment.
Abstract:
Tight bend-radius cable structures and methods for making the same are disclosed. Tight bend-radius cable structures can include a cable electrically and physically coupled to a connector. An inner strain-relief member can be coupled to the cable and the connector to provide protection and strain relief for connection between the connector and the cable. The cable can then be manipulated into a final configuration, and an outer strain-relief member can be coupled to the cable and connector to hold the cable in its final configuration.
Abstract:
An electronic device can include a frame configured to receive and support an electronic component, a shell defining an internal volume sized to encompass the frame and the electronic component, the shell being slidably removable from the frame, the electronic component positioned within the internal volume and including an aperture, and a sealing member including a seal body and a compressible lip extending from the seal body, the sealing member at least partially surrounding the electronic component. The compressible lip is oriented such that the shell compresses the lip in a direction against the seal body at a first position adjacent to the electronic component and in the direction against the seal body at a second position adjacent to the electronic component opposite the first position.