Abstract:
Antennas are provided for electronic devices such as portable computers. An electronic device may have a housing in which an antenna is mounted. The housing may be formed of conductive materials. A dielectric antenna window may be mounted in the housing to allow radio-frequency signals to be transmitted from the antenna and to allow the antenna to receive radio-frequency signals. Near-field radiation limits may be satisfied by reducing transmit power when an external object is detected in the vicinity of the dielectric antenna window and the antenna. A proximity sensor may be used in detecting external objects. A parasitic antenna resonating element may be interposed between the antenna resonating element and the dielectric antenna window to minimize near-field radiation hot-spots. The parasitic antenna resonating element may be formed using a capacitor electrode for the proximity sensor. A ferrite layer may be interposed between the parasitic element and the antenna window.
Abstract:
Antennas are provided for electronic devices such as portable computers. An electronic device may have a housing in which an antenna is mounted. The housing may be formed of conductive materials. A dielectric antenna window may be mounted in the housing to allow radio-frequency signals to be transmitted from the antenna and to allow the antenna to receive radio-frequency signals. Near-field radiation limits may be satisfied by reducing transmit power when an external object is detected in the vicinity of the dielectric antenna window and the antenna. A proximity sensor may be used in detecting external objects. A parasitic antenna resonating element may be interposed between the antenna resonating element and the dielectric antenna window to minimize near-field radiation hotspots. The parasitic antenna resonating element may be formed using a capacitor electrode for the proximity sensor. A ferrite layer may be interposed between the parasitic element and the antenna window.
Abstract:
Ground detection of a touch sensitive device is disclosed. The device can detect its grounded state so that poor grounding can be selectively compensated for in touch signals outputted by the device. The device can include one or more components to monitor certain conditions of the device. The device can analyze the monitored conditions to determine the grounding condition of the device. The device can apply a function to compensate its touch signal outputs if the device determines that it is poorly grounded. Conversely, the device can omit the function if the device determines that it is well grounded.
Abstract:
An electronic device may have a housing in which an antenna is mounted. An antenna window may be mounted in the housing to allow radio-frequency signals to be transmitted from the antenna and to allow the antenna to receive radio-frequency signals. Near-field radiation limits may be satisfied by reducing transmit power when an external object is detected in the vicinity of the dielectric antenna window and the antenna. A capacitive proximity sensor may be used in detecting external objects in the vicinity of the antenna. The proximity sensor may have conductive layers separated by a dielectric. A capacitancc-to-digital converter may be coupled to the proximity sensor by inductors. The capacitive proximity sensor may be interposed between an antenna resonating element and the antenna window. The capacitive proximity sensor may serve as a parasitic antenna resonating element and may be coupled to the housing by a capacitor.
Abstract:
Improved capacitive touch and hover sensing with a sensor array is provided. An AC ground shield positioned behind the sensor array and stimulated with signals of the same waveform as the signals driving the sensor array may concentrate the electric field extending from the sensor array and enhance hover sensing capability. The hover position and/or height of an object that is nearby, but not directly above, a touch surface of the sensor array, e.g., in the border area at the end of a touch screen, may be determined using capacitive measurements of sensors near the end of the sensor array by fitting the measurements to a model. Other improvements relate to the joint operation of touch and hover sensing, such as determining when and how to perform touch sensing, hover sensing, both touch and hover sensing, or neither.
Abstract:
Ground detection of a touch sensitive device is disclosed. The device can detect its grounded state so that poor grounding can be selectively compensated for in touch signals outputted by the device. The device can include one or more components to monitor certain conditions of the device. The device can analyze the monitored conditions to determine the grounding condition of the device. The device can apply a function to compensate its touch signal outputs if the device determines that it is poorly grounded. Conversely, the device can omit the function if the device determines that it is well grounded.