Abstract:
A power gate is coupled to a power supply circuit to selectively provide power to a processing core. A switch has a local state and a remote state to alternately route (i) a local sense point on a supply side of the power gate and (ii) and a remote sense point on a load side of the power gate, to a load voltage feedback input of the power supply circuit. Timing logic and driver circuitry control the power gate and the switch in response to a processing core enable signal. Other embodiments are also described.
Abstract:
A compass (14) output in a first portable electronic device (10) is monitored as the first device (10) and a second electronic device (12) come closer to each other. It is determined, by a process running in the first device (10), whether a magnetic field signature that is based on the monitored compass output is associated with a previously defined type of electronic device with which a network device discovery process is to be conducted.
Abstract:
Portable electronic devices may be wirelessly charged while resting on a wireless charging surface of a wireless power transmitting device. The wireless power transmitting device may have an array of coils for transmitting wireless power. The portable electronic devices may have coils for receiving the transmitted wireless power. Magnetic sensors may be used in the portable electronic devices to sense magnetic fields produced by the wireless power transmitting device. The magnetic fields may be produced by permanent magnets, electromagnets that are separated from the coils, or coils in the array of coils. Sensors may also be used in the portable electronic devices and wireless power transmitting device such as sound sensors, light sensors, capacitive sensors, proximity sensors, and other sensors. These sensors may be used in measuring lateral position and orientation for the portable devices so that content may be displayed across multiple portable devices.
Abstract:
An electronic device may have a gyroscopic sensor. The gyroscopic sensor may produce angular velocity data in response to movement of the electronic device. The gyroscopic sensor may have a first and second parallel branches of circuitry that are configured to produce angular velocity data from microelectromechanical systems output signals. When performing functions such as gaming or navigation functions, the electronic device may use the first branch of circuitry to produce angular velocity data with a large dynamic range. When performing functions such as image stabilization operations, the electronic device may use the second branch of circuitry to produce angular velocity data that is characterized by a relatively small amount of noise.
Abstract:
A wireless power system may include an accessory configured to transfer or relay wireless power to a portable electronic device. The portable electronic device may include wireless charging circuitry and sensors configured to detect compatible accessories currently coupled with the portable electronic device. The portable electronic device performs wireless charging or related functions in accordance with the coupled accessories.
Abstract:
An electronic device may include a haptic actuator that may include a housing and a field member movable within the housing, and a driver capable of driving the haptic actuator and sensing at least one of a drive voltage and drive current for the haptic actuator. The electronic device may also include a closed-loop controller cooperating with the driver. The closed-loop controller may be capable of determining a calibration of the haptic actuator based upon at least one of the drive voltage and drive current, storing a reference pattern of movement for the field member, and driving the haptic actuator in a closed-loop configuration based upon the calibration of the haptic actuator and reference pattern of movement of the field member.
Abstract:
Measurement data is collected from a magnetic sensor in a portable device, while the device is being carried by its end user and without requiring the end user to deliberately rotate or position the device while the output data is being collected. For example, the device may be held in the user' s hand while walking or standing, or it may be fixed to the dashboard of an automobile or boat. Measurement data may also be collected from one or more positing, orientation or movement sensors. The collected measurement data from one or both of the magnetic sensor and the position, orientation or movement sensor is processed. In response, either a 2D compass calibration process or a 3D process is signaled to be performed. Other embodiments are also described and claimed.
Abstract:
A power-management unit is described. This power-management unit allows a common signal line to communicate data between an integrated circuit (which may be external to the power-management unit) and a battery-monitoring mechanism in a battery pack, and to convey a signal that represents a temperature state of the battery pack to a temperature-monitoring circuit or mechanism that monitors the temperature state of the battery pack. In particular, the power-management unit may include a single-wire interface or a multiplexer that, at a given time, selectively couples the signal line from the battery pack either to the integrated circuit or the temperature-monitoring circuit based on a control signal provided by the integrated circuit (for example, via an I2C bus or interface). In this way, the power-management unit may reduce the number of signal lines needed to communicate with the battery-monitoring mechanism and to convey the signal.
Abstract:
A compass output in a first portable electronic device is monitored as the first device and a second electronic device come closer to each other. It is determined, by a process running in the first device, whether a magnetic field signature that is based on the monitored compass output is associated with a previously defined type of electronic device with which a network device discovery process is to be conducted. Other embodiments are also described and claimed.