Abstract:
Apparatus, systems and methods for improving strength of a thin glass member for an electronic device are disclosed. In one embodiment, the glass member can have improved strength by using multi-bath chemical processing. The multi-bath chemical processing allows greater levels of strengthening to be achieved for glass member. In one embodiment, the glass member can pertain to a glass cover for a housing of an electronic device.
Abstract:
Disclosed are systems and methods for mechanically reducing an amount of the skull material in a finished, molded part formed from amorphous alloy using an injection molding system. Skull material of molten amorphous alloy can be captured in a trap before molding such material. A cavity can be provided in the injection molding system to trap the skull material. For example, the cavity can be provided in the mold, the tip of the plunger rod, or in the transfer sleeve. Alternatively, mixing of molten amorphous alloy can be induced so that skull material is reduced before molding. A plunger and/or its tip can be used to induce mixing (e.g., systematic movement of plunger rod, or a shape of its tip). By minimizing the amount of skull material in the finished, molded part, the quality of the part is increased.
Abstract:
Apparatus, systems and methods for improving chemical strengthening behavior in glass members are disclosed. According to one aspect, a method for processing a glass part formed using a fusion process or a float process includes annealing the glass part and then chemically strengthening the glass part. Annealing the glass part includes at least heating the glass part at a first temperature, maintaining the first temperature, and cooling the glass part to a second temperature using a controlled cooling process. Chemically strengthening the glass part includes facilitating an ion exchange between ions included in the glass part and ions included in a chemical strengthening bath.
Abstract:
Anodized electroplated aluminum structures and methods for making the same are disclosed. Cosmetic structures according to embodiments of the invention are provided by electroplating a non-cosmetic structure with aluminum and then anodizing the electroplated aluminum. This produces cosmetic structures that may possess desired structural and cosmetic properties and that may be suitable for use a housing or support members of electronic devices.
Abstract:
Apparatus, systems and methods for improving strength of a thin glass member for an electronic device are disclosed. In one embodiment, the glass member can have improved strength characteristics in accordance with a predetermined stress profile. The predetermined stress profile can be formed through multiple stages of chemical strengthening. The stages can, for example, have a first ion exchange stage where larger ions are exchanged into the glass member, and a second ion exchange stage where some of the larger ions are exchanged out from the glass member. In one embodiment, the glass member can pertain to a glass cover for a housing for an electronic device. The glass cover can be provided over or integrated with a display.
Abstract:
Apparatus, systems and methods for characteristics of glass components through use of one or more coatings are disclosed. The coatings are typically thin coatings, such as thin film coatings. The coatings can serve to increase strength of the glass components and/or provide durable user interfacing surfaces. Accordingly, glass articles that have received coatings are able to be not only thin but also sufficiently strong so as to resist damage from impact events. The coated glass articles are well suited for use in consumer products, such as consumer electronic devices (e.g., electronic devices).
Abstract:
Apparatus, systems and methods for improving strength of a thin glass cover for an electronic device are disclosed. In one embodiment, the glass member can have improved strength by chemical strengthening in a series of stages. The stages can, for example, have a first ion exchange stage where larger ions are exchanged into the glass cover, and a second ion exchange stage where some of the larger ions are exchanged out from the glass cover. Optionally, in one embodiment, the glass cover can improve its strength by forming its edges with a predetermined geometry. Advantageously, the glass cover can be not only thin but also adequately strong to limit susceptibility to damage. In one embodiment, the glass member can pertain to a glass cover for a housing for an electronic device. The glass cover can be provided over or integrated with a display, such as a Liquid Crystal Display (LCD) display.
Abstract:
Apparatus, systems and methods for improving chemical strengthening of glass are disclosed. In one embodiment, a mechanical stress can be induced on a glass article while undergoing chemical strengthening. In another embodiment, vibrations, such as ultrasonic vibrations, can be induced during chemical strengthening of a glass article. The use of mechanical stress and/or vibrations during chemically strengthening of a glass article can enhance the effectiveness of the chemical strengthening process. Accordingly, glass articles that have undergone chemical strengthening processing are able to be not only thin but also sufficiently strong and resistant to damage. The strengthened glass articles are well suited for use in consumer products, such as consumer electronic devices (e.g., portable electronic devices).
Abstract:
Apparatus, systems and methods for improving strength of a thin glass cover for an electronic device are disclosed. In one embodiment, the glass member can have improved strength by forming its edges with a predetermined geometry and/or by chemically strengthening the edges. Advantageously, the glass member can be not only thin but also adequately strong to limit susceptibility to damage. In one embodiment, the glass member can pertain to a glass cover for a housing for an electronic device. The glass cover can be provided over or integrated with a display, such as a Liquid Crystal Display (LCD) display.