Abstract:
Techniques are disclosed relating to secure data storage. In various embodiments, a mobile device includes a wireless interface, a secure element, and a secure circuit. The secure element is configured to store confidential information associated with a plurality of users and to receive a request to communicate the confidential information associated with a particular one of the plurality of users. The secure element is further configured to communicate, via the wireless interface, the confidential information associated with the particular user in response to an authentication of the particular user. The secure circuit is configured to perform the authentication of the particular user. In some embodiments, the mobile device also includes a biosensor configured to collect biometric information from a user of the mobile device. In such an embodiment, the secure circuit is configured to store biometric information collected from the plurality of users by the biosensor.
Abstract:
Techniques are disclosed relating to secure data storage. In various embodiments, a mobile device includes a wireless interface, a secure element, and a secure circuit. The secure element is configured to store confidential information associated with a plurality of users and to receive a request to communicate the confidential information associated with a particular one of the plurality of users. The secure element is further configured to communicate, via the wireless interface, the confidential information associated with the particular user in response to an authentication of the particular user. The secure circuit is configured to perform the authentication of the particular user. In some embodiments, the mobile device also includes a biosensor configured to collect biometric information from a user of the mobile device. In such an embodiment, the secure circuit is configured to store biometric information collected from the plurality of users by the biosensor.
Abstract:
In certain embodiments, an electronic device can include a secure element that detects a mechanical input. The mechanical input can correspond to an instruction to transmit securely stored payment information to another device and/or to release such information to an application on the device (e.g., for use in an in-app commerce transaction). This feature can inhibit or prevent unauthorized transmission of payment information. When the mechanical input is detected, payment information can be transmitted to a point of sale (POS) terminal (e.g., via near-field communication) or released to an app on the device. Further, a user can either use default payment information or interact with the device (before or after providing the mechanical input) to select appropriate payment information for a transaction. For example, the user can select between credit cards, debit cards and/or stored-value cards (e.g., transit card).
Abstract:
In certain embodiments, an electronic device can include a secure element that detects a mechanical input. The mechanical input can correspond to an instruction to transmit securely stored payment information to another device and/or to release such information to an application on the device (e.g., for use in an in-app commerce transaction). This feature can inhibit or prevent unauthorized transmission of payment information. When the mechanical input is detected, payment information can be transmitted to a point of sale (POS) terminal (e.g., via near-field communication) or released to an app on the device. Further, a user can either use default payment information or interact with the device (before or after providing the mechanical input) to select appropriate payment information for a transaction. For example, the user can select between credit cards, debit cards and/or stored-value cards (e.g., transit card).
Abstract:
Systems, methods, and computer-readable media for provisioning credentials on an electronic device are provided. In one example embodiment, a secure platform system may be in communication with an electronic device and a financial institution subsystem. The secure platform system may be configured to, inter alia, receive user account information from the electronic device, authenticate a user account with a commercial entity using the received user account information, detect a commerce credential associated with the authenticated user account, run a commercial entity fraud check on the detected commerce credential, commission the financial institution subsystem to run a financial entity fraud check on the detected commerce credential based on the results of the commercial entity fraud check, and facilitate provisioning of the detected commerce credential on the electronic device based on the results of the financial entity fraud check. Additional embodiments are also provided.
Abstract:
A system for provisioning credentials onto an electronic device is provided. The system may include a payment network subsystem, a service provider subsystem, a primary user device, and a secondary user device. The user may select a particular payment card to provision onto the secondary user device by providing an input at the primary user device. A broker module running on the service provider subsystem may then transfer a disabled pass to the secondary user device. Concurrently, the payment network subsystem may direct a trusted service manager module on the service provider subsystem to write credential information onto a secure element within the secondary user device. Once the secure element has been updated, the broker module may provide an activated pass to the secondary user device so that the secondary user device can be used to perform NFC-based financial transactions at a merchant terminal.
Abstract:
Systems, methods, and computer-readable media for provisioning credentials on an electronic device are provided. In one example embodiment, a secure platform system may be in communication with an electronic device and a financial institution subsystem. The secure platform system may be configured to, inter alia, receive user account information from the electronic device, authenticate a user account with a commercial entity using the received user account information, detect a commerce credential associated with the authenticated user account, run a commercial entity fraud check on the detected commerce credential, commission the financial institution subsystem to run a financial entity fraud check on the detected commerce credential based on the results of the commercial entity fraud check, and facilitate provisioning of the detected commerce credential on the electronic device based on the results of the financial entity fraud check. Additional embodiments are also provided.