Abstract:
An electrical connector (300) that utilizes a flexible substrate (308) for providing electrical contact surfaces within the electrical connector is disclosed. Advantageously, the electrical contact surfaces can be precisely formed on the flexible substrate such that' manual assembly of individual contacts (e.g., pins) for a connector can be avoided. In one embodiment, the flexible substrate also facilitates connection of the electrical connector to other electrical components, such as other substrates, integrated circuits, etc., without having to solder leads or pins of a connector to a printed circuit board. In one implementation, the flexible substrate can be integrally formed with a system substrate.
Abstract:
A dual orientation connector having a connector tab with first and second major opposing sides and a plurality of electrical contacts carried by the connector tab. The plurality of contacts includes a first set of external contacts formed at the first major side and a second set of external contacts formed at the second major side. The first plurality of contacts are symmetrically spaced with the second plurality of contacts and the connector tab is shaped to have 180 degree symmetry so that it can be inserted and operatively coupled to a corresponding receptacle connector in either of two insertion orientations.
Abstract:
A portable electronic device may have a sealed connector secured within a device housing. The sealed connector may have a metal shell. A plastic contact housing may be insert molded within the shell. Conductive signal contacts may be laterally spaced in the contact housing. An elastomeric gasket may be assembled or compression molded onto the metal shell. Left and right metal brackets may be welded onto the metal shell to moisture-seal latch windows. A water-resistant sealing layer may be attached to the bottom plate of the metal shell to moisture-seal alignment rail windows. The sealed connector may be pressed against the device housing to place the gasket in a compressed state. The connector may be secured to the device housing by screwing down the metal brackets to a circuit board assembled within the housing while the gasket is in the compressed state.
Abstract:
A compact power adapter is disclosed. In one embodiment, a compact power adapter is facilitated by improved approaches to construct and assemble the power adapter. According to one aspect, connectors can serve to electrically couple blades (or prongs) of a power adapter plug to a printed circuit board assembly internal to a housing for the power adapter. The connectors serve to couple AC power to the printed circuit board assembly where the AC power can be converted to DC power. The connectors also facilitate assembly of the power adapter in that reliable interconnections can be provided without wires, soldering or other custom assembly operations. In one embodiment, a base for a power adapter plug of a power adapter can include a metal base connected to a blade (or prong) of the power adapter plug. The metal base can provide mechanical support to the blade as well as electrical connectivity to an internal terminal for the power adapter plug. The internal terminals used by a power adapter plug of a power adapter can be coupled to a printed circuit board assembly using connectors, thereby facilitating interconnection with electrical components used by the power adapter.
Abstract:
A dual orientation connector having a connector tab with first and second major opposing sides and a plurality of electrical contacts carried by the connector tab. The plurality of contacts includes a first set of external contacts formed at the first major side and a second set of external contacts formed at the second major side. The first plurality of contacts are symmetrically spaced with the second plurality of contacts and the connector tab is shaped to have 180 degree symmetry so that it can be inserted and operatively coupled to a corresponding receptacle connector in either of two insertion orientations.
Abstract:
Cable adapters and connectors receive electrical signals and output optical signals. A cable adapter can receive various data signals in multiple interface protocols at a first electrical connector and provide an optical signal at a second connector. The conversion of electrical signals to optical signals may be achieved at various locations in the cable adapter. A connector can include an optical transmitter for converting electrical signals into optical signals. Such a connector can be provided on an output end of a cable adapter to provide optical signals corresponding to electrical signals received at an input connector of the cable adapter.
Abstract:
Connectors for cables such as a 30-pin connector are provided. The connectors may have thermal protection circuits and may carry a power supply voltage and a ground voltage. The thermal protection circuits may disable the power supply voltage when the temperature of the connector exceeds a threshold value. The connectors may have structures that encourage any dendritic failure to occur in a preferred location.
Abstract:
The present disclosure relates generally to connector plugs and jacks and in particular to an audio connector plug and jack that can be used in place of the a standard low profile plug and electronic devices using low profile plug receptacles. The connector plug has a reduced plug length and thickness, an intuitive insertion orientation and a smooth, consistent feel when inserted and extracted from its corresponding receptacle connector. A portion or all of the plug connector may include a flexible material that allows the connector to bend with respect to an insertion axis along which the plug connector is designed to be inserted into a corresponding receptacle connector. A corresponding connector jack may be configured to receive the reduced length and thickness connector plug.
Abstract:
A plug connector with external contacts is provided. The connector has one pair of contacts for transmitting data and one pair of contacts for receiving data. All data transmitted and received using the plug connector is serialized/de-serialized to enable data transmission at a very high rate. A corresponding receptacle connector has configurable contacts that are configured based on the orientation of the plug connector with respect to the receptacle connector. The receptacle connector may be included in a host device and has associated circuitry to detect orientation of the plug connector and to configure the contacts of the receptacle connector.
Abstract:
A portable electronic device may have a sealed connector secured within a device housing. The sealed connector may have a metal shell. A plastic contact housing may be insert molded within the shell. Conductive signal contacts may be laterally spaced in the contact housing. An elastomeric gasket may be assembled or compression molded onto the metal shell. Left and right metal brackets may be welded onto the metal shell to moisture-seal latch windows. A water-resistant sealing layer may be attached to the bottom plate of the metal shell to moisture-seal alignment rail windows. The sealed connector may be pressed against the device housing to place the gasket in a compressed state. The connector may be secured to the device housing by screwing down the metal brackets to a circuit board assembled within the housing while the gasket is in the compressed state.