Abstract:
Adapters that can mount phones or other electronic devices on camera stabilizers, where the adapters are portable, can capable of charging, and can allow cameras on the phones to be easily leveled or adjusted to any orientation. An adapter can include a base portion having an opening, where a fastener in the opening can attach the adapter to a camera stabilizer, as well as an upright portion having an enclosure and a contacting surface. The enclosure can house a first magnet array for magnetically attracting a second magnet array in a phone, such that the phone can be readily mounted to a camera stabilizer. The enclosure can further house near-field communication circuits and components for identification. The upright portion and base portion can be connected by a fixed right angle or by a hinge, which can allow the adapter to fold into a more convenient form.
Abstract:
A magnetic alignment system can include a primary annular magnetic alignment component and a secondary annular magnetic alignment component. The primary alignment component can include an inner annular region having a first magnetic orientation, an outer annular region having a second magnetic orientation opposite to the first magnetic orientation, and a non-magnetized central annular region disposed between the primary inner annular region and the primary outer annular region. The secondary alignment component can have a magnetic orientation with a radial component. Additional features, such as a rotational magnetic alignment component and/or an NFC coil and circuitry can be included.
Abstract:
An accessory device for an electronic device is disclosed. The accessory device may include a unitary body having a first region, a second region, and a hinge positioned between the first region and the second region. When a force is applied to the first region, the first region may bend or pivot at the hinge. When bent, the first region allows the electronic device to slide into or out of the accessory device. Further, the electronic device may slide into or out of the accessory device in a straight or linear manner. Also, the accessory device may further include a power supply designed to supply electrical current to a battery of the electronic device. The accessory device may further include a connector that electrically connects the power supply with the electronic device. The sliding motion of the electronic device prevents the connector from damage by bending.
Abstract:
A removable case may receive an electronic device. A male connector in the case may mate with a female connector in the device. A battery in the case may supply power to the device through the male connector. The electronic device may have an antenna. The case may have a supplemental antenna that compensates for variations in performance in the antenna when the device is received within the case. The supplemental antenna may be a parasitic antenna resonating element that is formed from metal traces on a flexible printed circuit. The flexible printed circuit, a metal trim structure, and a plastic support structure may form portions of a connector support structure in the case.
Abstract:
A magnetic alignment system can include a primary annular magnetic alignment component and a secondary annular magnetic alignment component. The primary alignment component can include an inner annular region having a first magnetic orientation, an outer annular region having a second magnetic orientation opposite to the first magnetic orientation, and a non-magnetized central annular region disposed between the primary inner annular region and the primary outer annular region. The secondary alignment component can have a magnetic orientation with a radial component. Additional features, such as a rotational magnetic alignment component and/or an NFC coil and circuitry can be included.
Abstract:
An apparatus can include a display, a facial interface, and a connector between the display and the facial interface. The facial interface can at least translate or rotate relative to the display via the connector.
Abstract:
A magnetic alignment system can include a primary annular magnetic alignment component and a secondary annular magnetic alignment component. The primary alignment component can include an inner annular region having a first magnetic orientation, an outer annular region having a second magnetic orientation opposite to the first magnetic orientation, and a non-magnetized central annular region disposed between the primary inner annular region and the primary outer annular region. The secondary alignment component can have a magnetic orientation with a radial component.
Abstract:
A wireless power system has a wireless power transmitting device such as a charging puck and a wireless power receiving device such as a battery-operated device. The charging puck may be connected to a plug via a cable. The plug may include a boot and a connector. The boot may house a printed circuit board that is positioned closer to one of the boot housing walls.
Abstract:
A magnetic alignment system can include a primary annular magnetic alignment component and a secondary annular magnetic alignment component. The primary alignment component can include an inner annular region having a first magnetic orientation, an outer annular region having a second magnetic orientation opposite to the first magnetic orientation, and a non-magnetized central annular region disposed between the primary inner annular region and the primary outer annular region. The secondary alignment component can have a magnetic orientation with a radial component.
Abstract:
An electronic device case with a thermal dissipation system is disclosed. The electronic device case is configured to draw heat out of an electronic device disposed therein. The electronic device case includes a connector plug configured to engage a connector receptacle of the electronic device. The thermal dissipation system includes a thermally conductive pathway that both transfers heat to a heat spreader and electrically couples the electronic device to an electrical component within the electronic device case.