Abstract:
Methods and devices useful in radio frequency (RF) signal transmission are provided. By way of example, a wireless electronic device may include a transceiver, and an enclosure in which the transceiver is disposed. The enclosure may include an RF transparent layer and an RF opaque coating disposed on the RF transparent layer, where the RF opaque coating includes a pattern formed therein to enable RF signals to pass therethrough.
Abstract:
An electronic device may include a curved cover layer and an antenna. The antenna may include a ground and a resonating element on a curved surface of a substrate. The curved surface may have a curvature that matches that of the cover layer. The resonating element may include first, second, and third arms fed by a feed. The first arm and a portion of the ground may form a loop antenna resonating element. The second arm and the first arm may form an inverted-F antenna resonating element, where a portion of the first arm forms a return path to the antenna ground for the inverted-F antenna resonating element. A gap between the first and second arms may form a distributed capacitance. The third arm may form an L-shaped antenna resonating element. The antenna may have a wide bandwidth from below 2.4 GHz to greater than 9.0 GHz.
Abstract:
An electronic device may include a peripheral conductive housing wall. The housing wall may be patterned to form first and second continuous regions defining opposing edges of a patterned region. The patterned region may include slots that divide the wall into conductive structures between the first and second continuous regions. A tuning element for an antenna in the device may be formed from the conductive structures and the slots in the patterned region. The slots and the conductive structures in the patterned region may be configured to mitigate any excessive capacitances between the first and second continuous regions in one or more desired frequency bands to optimize antenna efficiency. The slots may be narrow enough so as to be invisible to the un-aided human eye. This may configure the first and second continuous regions to appear to a user as a single continuous piece of conductor.
Abstract:
A head-mounted device such as a pair of glasses may have display systems. The display systems may present images to eye boxes for viewing by a user. The glasses may have clear lenses through which real-world objects may be viewed from the eye boxes. The glasses may have a metal frame that surrounds the lenses and may have temples that are coupled to the frame using hinges. Radio-frequency transceiver circuitry such as cellular telephone transceiver circuitry may be coupled to one or more antennas in the head-mounted device. The antennas may have antenna resonating elements formed by placing dielectric-filled gaps in the metal frame to divide the frame into segments. Antenna resonating elements formed from segments of the metal frame may be coupled to the radio-frequency transceiver circuitry using transmission lines.
Abstract:
An electronic device may include a substrate and a conductive layer on the substrate. The conductive layer may be patterned to form a first region and a second region that surrounds and defines the shape of the first region. The first region may be formed from a continuous portion of the conductive layer. The second region may include a grid of openings that divides the conductive layer into an array of patches. The first region may form an antenna resonating element for an antenna. The second region may block antenna currents from the antenna resonating element and may be transparent to radio-frequency electromagnetic waves. The openings may have a width that is too narrow to be discerned by the human eye. This may configure the first and second regions to appear as a single continuous conductive layer despite the fact that an antenna resonating element is formed therein.