Abstract:
An electronic device may have magnetically mounted antenna structures. The electronic device may have a dielectric member against which one or more antennas are mounted. The dielectric member may be a cover glass layer that covers a display in the electronic device, a dielectric antenna window, or other dielectric structure. Each antenna may have an antenna support structure. Conductive antenna structures for the antenna may be mounted to the antenna support structure. The antennas may be cavity-backed planar inverted-F antennas. Portions of each antenna support structure may be configured to receive magnets. The magnets may be attracted towards ferromagnetic structures mounted on the dielectric member. As the magnets are attracted towards the ferromagnetic structure, the antennas may be held in place against the dielectric member.
Abstract:
An electronic device may have a housing in which an antenna is mounted. An antenna window may be mounted in the housing to allow radio-frequency signals to be transmitted from the antenna and to allow the antenna to receive radio-frequency signals. Near-field radiation limits may be satisfied by reducing transmit power when an external object is detected in the vicinity of the dielectric antenna window and the antenna. A capacitive proximity sensor may be used in detecting external objects in the vicinity of the antenna. The proximity sensor and the antenna may be formed using integral antenna resonating element and proximity sensor capacitor electrode structures. These structures may be formed from identical first and second patterned conductive layers on opposing sides of a dielectric substrate. A transceiver and proximity sensor may be coupled to the structures through respective high-pass and low-pass circuits.
Abstract:
An electronic device may be provided with slot antennas. A slot antenna may be formed from metal structures that have a dielectric gap defining an antenna slot. The metal structures may include multiple metal layers that overlap a plastic antenna window and that serve as capacitive electrodes in a capacitive proximity sensor. The metal structures may also include a metal electronic device housing. The metal electronic device housing and the metal layers may be formed on opposing sides of the antenna slot. The metal layers may have a notch that locally widens the antenna slot at an open end of the antenna slot. One of the metal layers may be shorted to the metal electronic device housing at an opposing closed end of the antenna slot. The antenna slot may be indirectly fed using a near-field-coupled antenna feed structure such as a metal patch that overlaps the antenna slot.
Abstract:
An electronic device may be provided with antenna structures. The antenna structures may be formed using a dielectric carrier structure such as a speaker enclosure, so that interior space within the electronic device that is occupied by a speaker can be used in forming an antenna. A speaker driver may be mounted in the speaker enclosure. Openings in the speaker enclosure may allow sound from the speaker driver to be emitted from the speaker enclosure. The antenna structures may have first and second loop antenna resonating elements. The first loop antenna resonating element may indirectly feed the second loop antenna resonating element. The second loop antenna resonating element may be a distributed loop element formed from a strip of metal with a width that loops around the speaker enclosure. Openings in the second loop antenna resonating element may be aligned with the speaker enclosure openings.
Abstract:
Electronic devices may be provided with antenna structures such as distributed loop antenna resonating element structures. A distributed loop antenna may be formed on an elongated dielectric carrier and may have a longitudinal axis. The distributed loop antenna may include a loop antenna resonating element formed from a sheet of conductive material that extends around the longitudinal axis. A gap may be formed in the sheet of conductive material. The loop antenna resonating element may be directly fed or indirectly fed. In indirect feeding arrangements, an antenna feed structure for indirectly feeding the loop antenna resonating element may be formed from a directly fed loop antenna structure on the elongated dielectric carrier.
Abstract:
Electronic devices may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include antenna resonating elements and antenna ground plane structures. An electronic device may have antennas formed from the antenna resonating elements and an antenna ground plane. The antenna ground plane may have slot structures. The slot structures may be configured to form a slot-based parasitic antenna element to minimize coupling between the antennas in a device. The slot-based parasitic antenna element may be located between the antennas in a device. The slots structures from which a parasitic antenna element is formed may include open slots and closed slots. Slots may have one or more arms and one or more bends. Slots may be formed in internal housing members, traces on dielectric carriers, and other conductive structures.
Abstract:
A display cover layer may be mounted in an electronic device housing using housing structures such as corner brackets. A slot antenna may be formed from a corner bracket opening, metal traces on a hollow plastic support structure, or other conductive structures. The slot antenna may have a main portion with opposing ends. An antenna feed may be located at one of the ends. The slot antenna may have a slot with one or more bends. The bends may provide the slot antenna with a C-shaped outline. A side branch slot may extend from the main portion of the slot at a location between the two bends. The presence of the side branch slot may enhance antenna bandwidth. A hollow enclosure may serve as an antenna support structure and as a speaker box enclosing a speaker driver. The antenna feed may be positioned so as to overlap the speaker driver.
Abstract:
An electronic device may be provided with a speaker box (54) antenna (40) for transmitting and receiving radio- frequency signals. A speaker box antenna may be formed from a hollow dielectric speaker box containing a speaker driver. An opening in the speaker box adjacent to the speaker driver may be aligned with a speaker port opening in a conductive electronic device housing structure. The speaker box may be surrounded by conductive structures that form a cavity for the antenna. The conductive structures may include parts of the conductive electronic device housing structure. The speaker box may have opposing upper and lower surfaces. Metal plates may form parts of the upper and lower surfaces and may be shorted together using a conductive layer such as a strip of metal tape. Frequencies of operation may be selected for the antenna that suppress undesired cavity modes and enhance antenna performance.
Abstract:
Electronic devices (10) may be provided with antenna structures (28). The antenna structures may include an antenna support structure (46) covered with patterned antenna traces (32,34). An antenna support structure (46) may be mounted in an electronic device (10) so that a surface (58) of the antenna support structure that is covered with patterned antenna traces lies flush with a planar surface (59) of the electronic device housing (12). A display cover layer (50) or other planar structure may be attached to the surface (58) of the antenna support structure (46) and the planar surface of the housing using adhesive (54). Injection molding and extrusion techniques may be used in forming a support structure (46) with elongated parallel cavities (62,64).
Abstract:
Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antennas. An antenna (40) may have an antenna ground (68) that is configured to form a cavity for the antenna. The antenna ground may be formed on a support structure (78). The antenna ground may have an opening. The support structure may have a planar surface (54) on which the opening is formed. A folded monopole antenna resonating element (66) and an L-shaped conductive antenna element (74) may be formed in the opening and may be capacitively coupled. The folded monopole antenna resonating element may have an end at which a positive antenna feed terminal (60) is formed. A ground antenna feed terminal (62) may be formed on the antenna ground. A segment of the antenna ground may extend between the ground antenna feed terminal and an end of the L-shaped conductive antenna element.