Abstract:
Systems and methods for testing or correcting optical pointing systems are disclosed. An optical pointing system may include an imaging sensor including a field-of-view (FOV) carried by the optical pointing system, at least one collecting device for collecting optical photons and directing the optical photons to the imaging sensor, at least one directing device for directing the at least one collecting device to different pointing vectors, and at least one non-transitory computer-readable storage medium carried by the optical pointing system having instructions encoded thereon that when executed by at least one processor operates to test the optical pointing system by, inter alia, determining a pointing error based, at least in part, on a macro image of a targeted object.
Abstract:
A counter measure system is provided having a unitary infrared transparent dome including a look angle greater than 180. The dome has two hemispherical regions, with a second region having a truncated bottom end defining an opening to a central cavity inside which electro-optical elements are disposed. The electro-optical elements can view outward through the dome at the look angle. The second region on the dome has a complementary curvature as the first region by continuing a similar radius beyond a transverse horizontal axis or equator. The dome is mounted to a base, which also may be referred to as a bezel. The base defines a rabbet extending circumferentially about the base imaginary center defining an aperture. The base and the dome are formed from different materials but have equivalent coefficients of thermal expansion. In one embodiment the dome if formed from sapphire and the base is titanium.