Abstract:
Earth-boring rotary drill bits including a bit body attached to a shank assembly at a joint. In some embodiments, the joint may be configured to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference at the joint. In additional embodiments, the joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit. Methods for attaching a shank assembly to a bit body of an earth-boring rotary drill bit include configuring a joint to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference. Additional embodiments include configuring a joint to carry a selected portion of any tensile longitudinal load applied to the drill bit by mechanical interference.
Abstract:
Earth-boring rotary drill bits including a bit body attached to a shank assembly at a joint. In some embodiments, the joint may be configured to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference at the joint. In additional embodiments, the joint may be configured to carry a selected portion of any tensile longitudinal load applied to the drill bit. Methods for attaching a shank assembly to a bit body of an earth-boring rotary drill bit include configuring a joint to carry at least a portion of any tensile longitudinal and rotational load applied to the drill bit by mechanical interference. Additional embodiments include configuring a joint to carry a selected portion of any tensile longitudinal load applied to the drill bit by mechanical interference.
Abstract:
Earth-boring tools for drilling subterranean formations include a particle-matrix composite material comprising a plurality of silicon carbide particles dispersed throughout a matrix material, such as, for example, an aluminum or aluminum-based alloy. In some embodiments, the silicon carbide particles comprise an ABC-SiC material. Methods of manufacturing such tools include providing a plurality of silicon carbide particles within a matrix material. Optionally, the silicon carbide particles may comprise ABC-SiC material, and the ABC-SiC material may be toughened to increase a fracture toughness exhibited by the ABC-SiC material. In some methods, at least one of an infiltration process and a powder compaction and consolidation process may be employed.
Abstract:
Earth-boring tools for drilling subterranean formations include a particle-matrix composite material comprising a plurality of silicon carbide particles dispersed throughout a matrix material, such as, for example, an aluminum or aluminum-based alloy. In some embodiments, the silicon carbide particles comprise an ABC-SiC material. Methods of manufacturing such tools include providing a plurality of silicon carbide particles within a matrix material. Optionally, the silicon carbide particles may comprise ABC-SiC material, and the ABC-SiC material may be toughened to increase a fracture toughness exhibited by the ABC-SiC material. In some methods, at least one of an infiltration process and a powder compaction and consolidation process may be employed.
Abstract:
Methods of forming cutting element pockets in earth-boring tools include machining at least one recess to define at least one surface of a cutting element pocket using a cutter oriented at an angle to a longitudinal axis of the cutting element pocket. Methods of forming earth-boring tools include forming a bit body and forming at least one cutting element pocket therein using a rotating cutter oriented at an angle relative to a longitudinal axis of the cutting element pocket being formed. Earth-boring tools have a bit body comprising a first surface defining a lateral sidewall of a cutting element pocket, a second surface defining an end wall of the cutting element pocket, and another surface defining a groove located between the first and second surfaces that extends into the body to enable a cutting element to abut against an area of the lateral sidewall and end wall of the pocket.
Abstract:
Un método para formar un cuerpo (102) de taladro de una broca (100) giratoria de perforación el método comprende: predecir un error posicional que se va a presentar mediante por lo menos una característica de una pluralidad de características (112) en un cuerpo (101) de taladro menos que completamente sinterizado luego de sinterizar el cuerpo (101) de taladro menos que completamente sinterizado a una densidad final deseada; formar por lo menos una característica de la pluralidad de características (112) en el cuerpo (101) de taladro menos que completamente sinterizado en una ubicación en por lo menos parcialmente determinada por el error de posición predicho que se va a presentar mediante por lo menos una característica de la pluralidad de características (112); y sinterizar el cuerpo (101) de taladro menos que completamente sinterizado a una densidad final deseada.
Abstract:
Geometric compensation techniques are used to improve the accuracy by which features may be located on drill bits formed using particle compaction and sintering processes. In some embodiments, a positional error to be exhibited by at least one feature in a less than fully sintered bit body upon fully sintering the bit body is predicted and the at least one feature is formed on the less than fully sintered bit body at a location at least partially determined by the predicted positional error. In other embodiments, bit bodies of earth-boring rotary drill bits are designed to include a design drilling profile and a less than fully sintered bit body is formed including a drilling profile having a shape differing from a shape of the design drilling profile. Less than fully sintered bit bodies of earth-boring rotary drill bits are formed using such methods.