Abstract:
An electrical submersible pumping assembly having a seal section and a motor section, and seals that prevent leakage from the seal section and the motor section during assembly. The seals cooperate with a coupling assembly for coupling together shafts from both the seal section and motor section. The coupling assembly outer diameter enlarges at a shoulder that circumscribes its outer surface. In one example, the seal that prevents leakage from the seal assembly provides a sealing interface around the larger diameter portion of the coupling assembly, that is removable by sliding the coupling so its smaller diameter portion is adjacent the seal assembly. The motor section is sealed by another sealing assembly that includes a body that circumscribes the motor shaft to define an annulus, a sealing disk selectively fills the annulus. The sealing disk can also be slid away from within the body while coupling the shafts with the coupling assembly.
Abstract:
Systems and methods for reliably communicating data at high data rates between surface and downhole equipment over a power cable by multiplexing data, modulating the data onto orthogonal carrier frequencies, communicating the modulated carrier signals over the power cable, recovering of the modulated signals, and demodulating the data stream from the recovered signal. One embodiment comprises a system that includes surface equipment connected by a power cable to an ESP system that has a gauge package connected to it. The gauge package uses a high-temperature DSP to perform the data processing associated with OFDM communications.
Abstract:
An electrical submersible pumping assembly having a seal section and a motor section, and seals that prevent leakage from the seal section and the motor section during assembly. The seals cooperate with a coupling assembly for coupling together shafts from both the seal section and motor section. The coupling assembly outer diameter enlarges at a shoulder that circumscribes its outer surface. In one example, the seal that prevents leakage from the seal assembly provides a sealing interface around the larger diameter portion of the coupling assembly, that is removable by sliding the coupling so its smaller diameter portion is adjacent the seal assembly. The motor section is sealed by another sealing assembly that includes a body that circumscribes the motor shaft to define an annulus, a sealing disk selectively fills the annulus. The sealing disk can also be slid away from within the body while coupling the shafts with the coupling assembly.
Abstract:
An electrical submersible pumping assembly having a seal section and a motor section, and seals that prevent leakage from the seal section and the motor section during assembly. The seals cooperate with a coupling assembly for coupling together shafts from both the seal section and motor section. The coupling assembly outer diameter enlarges at a shoulder that circumscribes its outer surface. In one example, the seal that prevents leakage from the seal assembly provides a sealing interface around the larger diameter portion of the coupling assembly, that is removable by sliding the coupling so its smaller diameter portion is adjacent the seal assembly. The motor section is sealed by another sealing assembly that includes a body that circumscribes the motor shaft to define an annulus, a sealing disk selectively fills the annulus. The sealing disk can also be slid away from within the body while coupling the shafts with the coupling assembly.
Abstract:
An electrical submersible pumping assembly having a seal section and a motor section, and seals that prevent leakage from the seal section and the motor section during assembly. The seals cooperate with a coupling assembly for coupling together shafts from both the seal section and motor section. The coupling assembly outer diameter enlarges at a shoulder that circumscribes its outer surface. In one example, the seal that prevents leakage from the seal assembly provides a sealing interface around the larger diameter portion of the coupling assembly, that is removable by sliding the coupling so its smaller diameter portion is adjacent the seal assembly. The motor section is sealed by another sealing assembly that includes a body that circumscribes the motor shaft to define an annulus, a sealing disk selectively fills the annulus. The sealing disk can also be slid away from within the body while coupling the shafts with the coupling assembly.
Abstract:
An electrical cable comprises a plurality of primary conductors 30, 32, 34, an insulating layer 36, 38, 40 surrounding each of said primary conductors, a coaxial conductive layer 46, 48, 50 surrounding at least one of said inner insulating layers, an outer insulating layer 52, 54, 56 on an outer surface of each coaxial conductive layer, and an outer jacket 64 surrounding all of the inner insulating layers and said outer insulating layer(s). The cable may further comprise inner cable armour 58, 60, 62 surrounding the outer insulating layer. The cable construction may be used as a motor lead extension (see figure 1) to be spliced onto the end of a downhole communication cable for an electrical submersible pump, so that regular cable may be used along the majority of the downhole length (thereby reducing cost), the coaxial and primary conductors enabling the coupling of information onto or off the cable.
Abstract:
A submersible pumping system for use downhole, wherein the system includes a pump, a pump motor, a seal section, a shaft coupling the pump motor to the pump, a bearing assembly for axially retaining the shaft in place, and an electrical insulator for electrically isolating the pump bearing assembly from electrical current leaking from the motor and through the shaft. The electrical insulator can be made from polyetheretherketone, polyimide, polyketone, and mixtures thereof.
Abstract:
Systems and methods for providing ride-through for interruptions in the power supplied to drives that are used to control equipment such as downhole submersible pumps. In one embodiment, a variable speed drive includes converter and inverter sections, a capacitor bank and a control system. The drive shuts down the converter section upon detecting a disruption in the AC input power and continues to generate output power by drawing on the energy stored in the capacitor bank. When the AC input power returns (or begins to return) to normal, the drive resumes operation of the converter section in a controlled manner (e.g., by presetting the firing angle of the SCR's in the converter to match the voltage across the capacitor bank.) The drive thereby limits the current that recharges the capacitor bank and prevents sudden inrushes of current that could damage the drive.