Abstract:
Methods, systems, apparatus and processes for determining the lithology as well as the mineralogy of subterranean formations surrounding a borehole are described. According to the methods and processes, well log data measurements from neutron spectroscopy applications and associated tool response parameters are solved using an artificial intelligence system, such as an expert system, which in turn generates an appropriate discriminator and/or compositional model that estimates both general and specific lithology as well as the mineralogy constraints of the subterranean formation being analyzed. The methods exhibit good elemental correlation between conventional methods of lithology and mineralogy determination, and can provide numerous output data, including grain density and porosity data within zones of the formation.
Abstract:
Systems, methods and devices for evaluating an earth formation intersected by a borehole. The method includes using a first radiation responsive component to detect gamma rays having an energy below a threshold energy; using a second radiation responsive component configured to detect gamma rays that traverse the first radiation responsive component; generating a reduced-Compton gamma ray spectrum by generating an anticoincidence gamma ray spectrum indicative of the gamma rays detected by the first radiation responsive component and the gamma rays detected by the second radiation responsive component. The anticoincidence gamma ray spectrum represents those gamma rays of the gamma rays detected by the second radiation responsive component that are not detected in coincidence with the gamma rays detected by the first radiation responsive component.
Abstract:
Method for estimating a lithotype of an earth formation, the method includes: obtaining at least two different energy spectra of radiation received from the earth formation using the logging tool, each energy spectrum having at least one of a natural gamma-ray spectrum, a fast neutron-induced inelastic spectrum, and a thermal neutron induced capture spectrum; establishing at least one geochemically-based constraint related to elemental spectral yields to be determined; determining the elemental spectral yields from the at least two different energy spectra by decomposing the at least two different energy spectra over weighted sum of monoelemental standards wherein at least one weight is constrained by the at least one geochemically-based constraint and each weight represents a proportion of one monoelemental standard; converting the elemental spectral yields to elemental concentrations; and using a classifier to receive the elemental concentrations as input and to provide a lithotype as output.
Abstract:
Methods and processes for determining the lithology as well as the mineralogy of subterranean formations is described. According to the methods and processes, well log data measurements (12) from pulsed neutron spectroscopy applications and associated tool response parameters are solved using an expert system, which in turn generates an appropriate discriminator and estimates both general (14A) and specific (14B) lithology and mineralogy (16) constraints of the subterranean formation being analyzed. The methods exhibit good elemental correlation between conventional methods of lithology and mineralogy determination, and can provide numerous output data, including grain density and porosity data within zones of the formation.
Abstract:
A method for evaluating an earth formation from a well bore, that includes: collecting at least one of geochemical data, petrophysical data and geomechanical data from a wellbore; and identifying depositional facies of the earth surrounding the wellbore. A computer program product and a system are provided.
Abstract:
Methods and processes for determining the lithology as well as the mineralogy of subterranean formations is described. According to the methods and processes, well log data measurements from pulsed neutron spectroscopy applications and associated tool response parameters are solved using an expert system, which in turn generates an appropriate discriminator and estimates both general and specific lithology and mineralogy constraints of the subterranean formation being analyzed. The methods exhibit good elemental correlation between conventional methods of lithology and mineralogy determination, and can provide numerous output data, including grain density and porosity data within zones of the formation.
Abstract:
Methods, systems, apparatus and processes for determining the lithology as well as the mineralogy of subterranean formations surrounding a borehole are described. According to the methods and processes, well log data measurements from neutron spectroscopy applications and associated tool response parameters are solved using an artificial intelligence system, such as an expert system, which in turn generates an appropriate discriminator and/or compositional model that estimates both general and specific lithology as well as the mineralogy constraints of the subterranean formation being analyzed. The methods exhibit good elemental correlation between conventional methods of lithology and mineralogy determination, and can provide numerous output data, including grain density and porosity data within zones of the formation.
Abstract:
A low value of Th/U ratio as determined from natural gamma radiation is indicative of deepwater sedimentation. This, together with estimates of total organic carbon from pulsed neutron measurements, is used to characterize source rocks. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.