Abstract:
An instrument for measuring gravitational acceleration, the instrument including: a plurality of accelerometers disposed about a three-dimensional structure, the plurality of accelerometers providing output used for measuring the gravitational acceleration; wherein each accelerometer in the plurality is implemented by at least one of a micro-electromechanical system (MEMS) and a nano-electromechanical system (NEMS).
Abstract:
A magnet assembly for measuring properties of a formation from a borehole, the magnet assembly including a first device and a second device, each device adapted for insertion into the borehole, the first device producing a first magnetic field, the second device producing a second magnetic field; wherein the second magnetic field is configurable for one of reinforcing and reducing the first magnetic field; and wherein the first device comprises a permanent magnet and the second device comprises at least one of one of a switchable magnet and switching windings.
Abstract:
An apparatus and method for estimating a parameter of interest using values of a beam property from two or more electromagnetic beams that both pass through at least part of an optical displacement device. The apparatus may include a Fabry-Perot interferometer, a collimated light source, and a detection array. At least one mirror of the interferometer may be operably coupled to an element receiving an external stimulus, such as pressure, force, and/or acceleration. The method includes using the apparatus.
Abstract:
A method and apparatus for estimating a flow rate of a phase of a multiphase fluid is disclosed. A first velocity distribution is obtained for a first set of nuclei in the fluid from a Nuclear Magnetic Resonance (NMR) signal received for the fluid in response to a first NMR excitation signal. A second velocity distribution is obtained for a second set of nuclei in the fluid from an NMR signal received for the fluid in response to a second NMR excitation signal. A velocity of the phase is estimated from the first velocity distribution and the second velocity distribution. The flow rate of the phase is estimated using the estimated velocity of the phase and an estimated volume fraction of the phase.
Abstract:
The present disclosure relates to methods and apparatuses for calibrating a sensor, particularly a gravimeter, which involves positioning the sensor in at least three different orientations and calibrating the sensor using a linear model and the sensor outputs from the at least three different orientations. The method may include applying an external force to the sensor. The apparatus includes a processor and storage subsystem with a program that, when executed, implements the method.
Abstract:
NMR measurements are made with a MWD tool having azimuthal sensitivity. The permanent magnet may be a U-shaped magnet or may have an opposed pair of magnets with axial orientation. The tool is designed for pulsing with short sequences for estimating BVI and CBW and minimizes the effect of tool motion.
Abstract:
An apparatus and method for estimating a parameter of interest using a force responsive element comprising, at least in part, a balanced material. The balanced material is temperature insensitive over a specified range of temperatures such that the force responsive element may estimate the parameter of interest by responding to a desired force with relatively little interference due to temperature changes within the specified range of temperatures.
Abstract:
The quality factor of a NMR-antenna depends upon mud conductivity, formation resistivity and the borehole size. The Q of the antenna is measured. From measurement of one of formation conductivity or borehole size, the other can be determined.
Abstract:
The present disclosure relates to methods and apparatuses for acquiring multi-component gravity information for an earth formation. More particularly, the present disclosure relates to estimating the movement of fluid in an earth formation using at least one gravimeter configured to generate multi-component gravity information. The method may include estimating density changes in the earth formation. The method may include estimating a position of the at least one gravimeter. The apparatus may include a multi- component gravimeter configured to estimate gravity vectors for each vector component.
Abstract:
An instrument for measuring gravitational acceleration, the instrument including: a plurality of accelerometers disposed about a three-dimensional structure, the plurality of accelerometers providing output used for measuring the gravitational acceleration; wherein each accelerometer in the plurality is implemented by at least one of a micro-electromechanical system (MEMS) and a nano-electromechanical system (NEMS).