Abstract:
The invention relates to a device for continuously and catalytically removing binder from metallic and/or ceramic moulded bodies produced by powder injection moulding, the device comprising a binder-removing furnace, through which the moulded bodies pass in a direction of conveyance and in which they are brought to a suitable processing temperature, a conveying device, for introducing a process gas which is needed to remove the binder and contains a reaction partner, at least one device for introducing a protective gas into a reaction chamber of the binder-removing furnace, and a burner, for burning the gaseous reaction products that result from the binder removing process, one or more devices being included which lead to a targeted flow of the process gas in the device transversely to the direction of conveyance.
Abstract:
The apparatus for the continuous catalytic removal of binder from metallic and/or ceramic shaped bodies produced by powder injection molding, which comprises a binder removal furnace through which the shaped bodies pass in a transport direction and are brought to a suitable process temperature, a feed facility for introduction of a process gas which is required for binder removal and comprises a reactant, at least one facility for the introduction of a protective gas into a reaction space of the binder removal furnace and a flare to burn the gaseous reaction products obtained in binder removal, wherein one or more devices which lead to a flow of the process gas directed transversely to the transport direction in the apparatus are present.
Abstract:
Preparation of acrolein/acrylic acid from propane comprises supplying reaction gas mixture input stream A to a reaction zone A; supplying dehydrogenated propane gas stream to obtain a product gas mixture; removing the product mixture stream A; dividing the product gas mixture stream A into component streams (I) and (II); feeding the component stream (II) in a second reaction zone B into an oxidative reactor, in which propylene in stream (II) is oxidized to form a product gas mixture B containing e.g. acrolein/acrylic acid as final product and separating the final product. Preparation of acrolein and/or acrylic acid from propane comprises supplying a reaction gas mixture input stream A (which is produced by merging at least four different gaseous initial streams 1, 2, 3 and 4) to the inlet of the first reaction zone A by at least a catalyst bed; optionally further supplying partially, heterogeneously catalyzed dehydrogenated propane gas stream to the mixture to obtain a product gas mixture containing propane and propylene; removing the obtained product gas mixture stream A from the first reaction zone A by discharge opening; dividing the product gas mixture stream A into two component streams (I) and (II) with identical composition, where the component stream (I) is fed back as gaseous initial stream 1 into the first reaction zone A in a first gas cycle operation and the component stream (II) is optionally led into the first separation zone A, to separate partial or large quantity of different propane and propylene components and to produce a residual product gas mixture stream A1 containing propane and propylene; feeding the component stream (II) or the product gas mixture in a second reaction zone B into at least an oxidative reactor, in which the propylene contained in the component stream (II) or in the product gas mixture stream A1 is subjected to selective heterogeneously catalyzed partial gaseous phase oxidation with molecular oxygen to form a product gas mixture B containing acrolein and/or acrylic acid as final product, optionally unconverted propane and propylene, and surplus molecular oxygen; removing the product gas mixture stream B from the reaction zone B; separating the final product, where the residual gas containing unconverted propane and propylene, and molecular oxygen is fed back as gaseous initial stream 2 in a second gas cycle operation into the reaction zone A (when the gaseous initial streams 2, 3 and 4 and optionally a gaseous stream different from the 1 are merged to a single propelled jet gaseous mixture stream); and subsequently operating the mixture with gaseous propelled jet mixture stream as propelled jet of a jet pump, which comprises a jet nozzle, a mixing path, a diffuser and a suction intake socket; where the direction of the propulsion of the propelled jet by the jet nozzle over a mixing path and the diffuser, points towards the inlet of the first reaction zone A and the suction effect of the suction intake socket, points towards the direction of the discharge opening of the first reaction zone A leading to the product gas mixture stream A and the component stream (I) is sucked through the negative pressure produced in the suction intake socket along with the splitting up of the product gas mixture A into the two component stream, and is transported with simultaneous mixing of propelled jet by the mixing path over the diffuser and the obtained reaction gas mixture input stream A is left into the inlet of the first reaction zone A; the gaseous initial streams 1, 2 and 3 is a propane, the gaseous initial stream 4 is a molecular hydrogen and the gaseous initial stream 3 is a fresh propane; the first gaseous initial stream 2 and 3 and optionally stream 1 and stream 4 are combined in an arbitrary sequence to a single gaseous mixture stream and stream 4 is added to the gaseous initial mixture stream under the formation of the gaseous propelled jet mixture stream.
Abstract:
The apparatus for the continuous catalytic removal of binder from metallic and/or ceramic shaped bodies produced by powder injection molding, which comprises a binder removal furnace through which the shaped bodies pass in a transport direction and are brought to a suitable process temperature, a feed facility for introduction of a process gas which is required for binder removal and comprises a reactant, at least one facility for the introduction of a protective gas into a reaction space of the binder removal furnace and a flare to burn the gaseous reaction products obtained in binder removal, wherein one or more devices which lead to a flow of the process gas directed transversely to the transport direction in the apparatus are present.
Abstract:
Preparation of acrolein/acrylic acid from propane comprises supplying reaction gas mixture input stream A to a reaction zone A; supplying dehydrogenated propane gas stream to obtain a product gas mixture; removing the product mixture stream A; dividing the product gas mixture stream A into component streams (I) and (II); feeding the component stream (II) in a second reaction zone B into an oxidative reactor, in which propylene in stream (II) is oxidized to form a product gas mixture B containing e.g. acrolein/acrylic acid as final product and separating the final product. Preparation of acrolein and/or acrylic acid from propane comprises supplying a reaction gas mixture input stream A (which is produced by merging at least four different gaseous initial streams 1, 2, 3 and 4) to the inlet of the first reaction zone A by at least a catalyst bed; optionally further supplying partially, heterogeneously catalyzed dehydrogenated propane gas stream to the mixture to obtain a product gas mixture containing propane and propylene; removing the obtained product gas mixture stream A from the first reaction zone A by discharge opening; dividing the product gas mixture stream A into two component streams (I) and (II) with identical composition, where the component stream (I) is fed back as gaseous initial stream 1 into the first reaction zone A in a first gas cycle operation and the component stream (II) is optionally led into the first separation zone A, to separate partial or large quantity of different propane and propylene components and to produce a residual product gas mixture stream A1 containing propane and propylene; feeding the component stream (II) or the product gas mixture in a second reaction zone B into at least an oxidative reactor, in which the propylene contained in the component stream (II) or in the product gas mixture stream A1 is subjected to selective heterogeneously catalyzed partial gaseous phase oxidation with molecular oxygen to form a product gas mixture B containing acrolein and/or acrylic acid as final product, optionally unconverted propane and propylene, and surplus molecular oxygen; removing the product gas mixture stream B from the reaction zone B; separating the final product, where the residual gas containing unconverted propane and propylene, and molecular oxygen is fed back as gaseous initial stream 2 in a second gas cycle operation into the reaction zone A (when the gaseous initial streams 2, 3 and 4 and optionally a gaseous stream different from the 1 are merged to a single propelled jet gaseous mixture stream); and subsequently operating the mixture with gaseous propelled jet mixture stream as propelled jet of a jet pump, which comprises a jet nozzle, a mixing path, a diffuser and a suction intake socket; where the direction of the propulsion of the propelled jet by the jet nozzle over a mixing path and the diffuser, points towards the inlet of the first reaction zone A and the suction effect of the suction intake socket, points towards the direction of the discharge opening of the first reaction zone A leading to the product gas mixture stream A and the component stream (I) is sucked through the negative pressure produced in the suction intake socket along with the splitting up of the product gas mixture A into the two component stream, and is transported with simultaneous mixing of propelled jet by the mixing path over the diffuser and the obtained reaction gas mixture input stream A is left into the inlet of the first reaction zone A; the gaseous initial streams 1, 2 and 3 is a propane, the gaseous initial stream 4 is a molecular hydrogen and the gaseous initial stream 3 is a fresh propane; the first gaseous initial stream 2 and 3 and optionally stream 1 and stream 4 are combined in an arbitrary sequence to a single gaseous mixture stream and stream 4 is added to the gaseous initial mixture stream under the formation of the gaseous propelled jet mixture stream.
Abstract:
The invention proposes a tube bundle heat exchanger (R) for removing dissolved substances from a polymer solution (4) by means of degassing, having a bundle of tubes (1) which are arranged parallel to one another and vertically and are fastened at both ends in each case in a tube base (2), having a fixture (3) in each tube (1) which narrows the free passage cross section through the tube (1), wherein the tubes (1) are traversed by the polymer solution (4), and having a casing space (5) around the tubes (1) which is traversed by a liquid heat carrier (6), having deflecting plates (7) in the casing space (5) which are each arranged in cross-sectional planes of the tube bundle heat exchanger (R) and in each case form a deflecting region (8) for the heat carrier (6), which tube bundle heat exchanger (R) is characterized in that no tubes (1) are arranged in the deflecting regions (8), and in that all the fixtures (3) are of identical design.
Abstract:
El aparato para la remocion catalitica continua de aglutinante de cuerpos configurados metalicos y/o de ceramica producidos mediante moldeo por inyeccion de polvo, que comprende un horno de remocion de aglutinante a traves del cual los cuerpos configurados pasan en una direccion de transporte y son llevados a una temperatura de proceso apropiada, una instalacion de alimentacion para introduccion de un gas de proceso que se requiere para remocion de aglutinante y comprende un reactivo, cuando menos una instalacion para la introduccion de un gas protector hacia un espacio de reaccion del horno de remocion de aglutinante y una flama para quemar los productos de reaccion gaseosos obtenidos en la remocion de aglutinante, en donde uno o mas dispositivos que conducen a un flujo del gas de proceso dirigido transversalmente a la direccion de transporte en el aparato estan presentes.
Abstract:
Preparation of acrolein/acrylic acid from propane comprises supplying reaction gas mixture input stream A to a reaction zone A; supplying dehydrogenated propane gas stream to obtain a product gas mixture; removing the product mixture stream A; dividing the product gas mixture stream A into component streams (I) and (II); feeding the component stream (II) in a second reaction zone B into an oxidative reactor, in which propylene in stream (II) is oxidized to form a product gas mixture B containing e.g. acrolein/acrylic acid as final product and separating the final product. Preparation of acrolein and/or acrylic acid from propane comprises supplying a reaction gas mixture input stream A (which is produced by merging at least four different gaseous initial streams 1, 2, 3 and 4) to the inlet of the first reaction zone A by at least a catalyst bed; optionally further supplying partially, heterogeneously catalyzed dehydrogenated propane gas stream to the mixture to obtain a product gas mixture containing propane and propylene; removing the obtained product gas mixture stream A from the first reaction zone A by discharge opening; dividing the product gas mixture stream A into two component streams (I) and (II) with identical composition, where the component stream (I) is fed back as gaseous initial stream 1 into the first reaction zone A in a first gas cycle operation and the component stream (II) is optionally led into the first separation zone A, to separate partial or large quantity of different propane and propylene components and to produce a residual product gas mixture stream A1 containing propane and propylene; feeding the component stream (II) or the product gas mixture in a second reaction zone B into at least an oxidative reactor, in which the propylene contained in the component stream (II) or in the product gas mixture stream A1 is subjected to selective heterogeneously catalyzed partial gaseous phase oxidation with molecular oxygen to form a product gas mixture B containing acrolein and/or acrylic acid as final product, optionally unconverted propane and propylene, and surplus molecular oxygen; removing the product gas mixture stream B from the reaction zone B; separating the final product, where the residual gas containing unconverted propane and propylene, and molecular oxygen is fed back as gaseous initial stream 2 in a second gas cycle operation into the reaction zone A (when the gaseous initial streams 2, 3 and 4 and optionally a gaseous stream different from the 1 are merged to a single propelled jet gaseous mixture stream); and subsequently operating the mixture with gaseous propelled jet mixture stream as propelled jet of a jet pump, which comprises a jet nozzle, a mixing path, a diffuser and a suction intake socket; where the direction of the propulsion of the propelled jet by the jet nozzle over a mixing path and the diffuser, points towards the inlet of the first reaction zone A and the suction effect of the suction intake socket, points towards the direction of the discharge opening of the first reaction zone A leading to the product gas mixture stream A and the component stream (I) is sucked through the negative pressure produced in the suction intake socket along with the splitting up of the product gas mixture A into the two component stream, and is transported with simultaneous mixing of propelled jet by the mixing path over the diffuser and the obtained reaction gas mixture input stream A is left into the inlet of the first reaction zone A; the gaseous initial streams 1, 2 and 3 is a propane, the gaseous initial stream 4 is a molecular hydrogen and the gaseous initial stream 3 is a fresh propane; the first gaseous initial stream 2 and 3 and optionally stream 1 and stream 4 are combined in an arbitrary sequence to a single gaseous mixture stream and stream 4 is added to the gaseous initial mixture stream under the formation of the gaseous propelled jet mixture stream.
Abstract:
The present invention relates to a process for preparing isocyanates and an apparatus suitable for this purpose, and also its use. In the process, an amine and phosgene, both in the gas phase, react in the presence of an inert medium. A number, n, of amine streams are reacted with a number, n +1, of phosgene streams in a reactor. The number n is a positive integer of at least 1. All amine and phosgene streams are introduced into the reactor through annular gaps for mixing.