Abstract:
A diesel oxidation catalyst for the treatment of exhaust gas emissions such as the oxidation of unburned hydrocarbons (HC) and carbon monoxide (CO) and the reduction of nitrogen oxides (NOx) is described. More particularly the present invention is directed to a washcoat composition comprising high silica to alumina zeolite and platinum and palladium such that the zeolite minimizes negative interactions of these platinum group metals with the zeolite.
Abstract:
A diesel oxidation catalyst for the treatment of exhaust gas emissions, such as the oxidation of unburned hydrocarbons (HC), and carbon monoxide (CO) and the reduction of nitrogen oxides (NOx) is described. More particularly, the present invention is directed to a washcoat composition comprising high silica to alumina zeolite and platinum and palladium such that the zeolite minimizes negative interactions of these platinum group metals with the zeolite.
Abstract:
Described are compositions and catalytic articles comprising both a first molecular sieve promoted with copper and a second molecular sieve promoted with iron, the first and second molecular sieves having a d6r unit and the first molecular sieves having cubic shaped crystals with an average crystal size of about 0.5 to about 2 microns. The weight ratio of the copper-promoted molecular sieve to the iron-promoted molecular sieve can be about 1:1 to about 4:1. The catalytic articles are useful in methods and systems to catalyze the reduction of nitrogen oxides in the presence of a reductant.
Abstract:
Described is a selective catalytic reduction catalyst comprising an iron-promoted 8-ring small pore molecular sieve. Systems and methods for using these iron-promoted 8-ring small molecular sieves as catalysts in a variety of processes such as abating pollutants in exhaust gases and conversion processes are also described.
Abstract:
A lean NOx trap for the treatment of exhaust gas emissions, such as the oxidation of unburned hydrocarbons (HC), and carbon monoxide (CO), and the trapping and reduction of nitrogen oxides (NOx) is disclosed. Nitrogen oxide storage catalysts can comprise a layer on a substrate including ceria-alumina particles having a ceria phase present in a weight percent of the composite in the range of about 20% to about 80% on an oxide basis, an alkaline earth metal component supported on the ceria-alumina particles, wherein the CeO2 is present in the form of crystallites that are hydrothermally stable and have an average crystallite size less than 130 Å after aging at 950°C for 5 hours in 2% O2 and 10% steam in N2.
Abstract:
Described are compositions and catalytic articles comprising both a copper-promoted 8-ring small pore molecular sieve and an iron-promoted 8-ring small pore molecular sieve. The catalytic articles are useful in methods and systems to catalyze the reduction of nitrogen oxides in the presence of a reductant.