Abstract:
An electrodeposition method is described where a conductive substrate is immersed in an electrodeposition coating composition comprising, in an aqueous medium: A) a resin having a plurality of acid-salted primary amine groups, and B) a curing agent having a plurality of cyclic carbonate groups.
Abstract:
Compositions and methods are provided that increase adhesion of a primer, such as an adhesion promoter, to a plastic substrate and/or increase adhesion of a topcoat to the primer. Chemical properties at the interface of the substrate and the adhesion promoter coating and/or chemical properties at the interface of the adhesion promoter coating and topcoat are modified in order to improve adhesion.
Abstract:
A coating composition comprises a crosslinkable carbamate-functional resin and an aminoplast. The aminoplast comprises the reaction product of an aldehyde and a melamine. The aminoplast has a content of imino groups of less than or equal to about 10 %, a content of alkylol groups of at least about 7 %, and a remainder of groups being alkoxyalkyl groups, all based on a total number of reactive sites present in the melamine prior to reaction. A coating system includes a clear coat layer that comprises the reaction product of the crosslinkable carbamate-functional resin and the aminoplast. Threshold adhesion strength, in accordance with MVSS standards, can be achieved between glass and the coating system when the crosslinkable carbamate- functional resin and the specific aminoplast set forth above are reacted to form the clear coat layer, while minimizing problems associated with high viscosity of aminoplasts having a high content of imino groups of greater than 10 %.
Abstract:
Compositions and methods are provided that increase adhesion of a primer, such as an adhesion promoter, to a plastic substrate and/or increase adhesion of a topcoat to the primer. Chemical properties at the interface of the substrate and the adhesion promoter coating and/or chemical properties at the interface of the adhesion promoter coating and topcoat are modified in order to improve adhesion.
Abstract:
A method of painting a substrate coated with an electrocoat, wherein the electrocoat includes an average surface roughness equal to or greater than 3 microns, includes applying a two-component sealer onto the electrocoat to form a film having a thickness of from 5 microns to 20 microns. The two-component sealer is partially cured by application of heat to a gel content of from 10 to 50 wt. %. Thereafter, a topcoat, typically including a basecoat and a clearcoat, is applied onto the two-component sealer. Both the two-component sealer and the topcoat are completely cured by application of heat.
Abstract:
An electrodeposition method is described where a conductive substrate is immersed in an electrodeposition coating composition comprising, in an aqueous medium: A) a resin having a plurality of acid-salted primary amine groups, and B) a curing agent having a plurality of cyclic carbonate groups.