Abstract:
The present invention relates to novel compounds of the formula (I) wherein R1 and R1' independently of each other are H or a substituent, halogen or SiR6R4R5; R2 and R2, may be the same or different and are selected from C1-C25alkyl, C3-C12cycloalkyl, C2-C25alkenyl, C2-C25alkynyl, C4-C25aryl, C5-C25alkylaryl or C5-C25aralkyl, each of which is unsubstituted or substituted, and under conditions as defined in claim 1, R2 and/or R2' may also be halogen or hydrogen; X is a divalent linking group selected from formula (Ia) and formula (Ib); Y and Y' independently are selected from formula (Ic), formula (Id), formula (Ie), formula (If), formula (Ig); n and p independently range from 0 to 6; where further symbols are as defined in claim 1, and to corresponding oligomers and (co)polymers. The compounds according to the invention are useful as semiconductors and have excellent solubility in organic solvents and excellent film-forming properties. In addition, high efficiency of energy conversion, excellent field-effect mobility, good on/off current ratios and/or excellent stability can be observed, when the polymers according to the invention are used in organic field effect transistors, organic photovoltaics (solar cells) and photodiodes.
Abstract:
The present invention relates to novel compounds of the formula (I) wherein R1 and R1' independently of each other are H or a substituent, halogen or SiR6R4R5; R2 and R2, may be the same or different and are selected from C1-C25alkyl, C3-C12cycloalkyl, C2-C25alkenyl, C2-C25alkynyl, C4-C25aryl, C5-C25alkylaryl or C5-C25aralkyl, each of which is unsubstituted or substituted, and under conditions as defined in claim 1, R2 and/or R2' may also be halogen or hydrogen; X is a divalent linking group selected from formula (Ia) and formula (Ib); Y and Y' independently are selected from formula (Ic), formula (Id), formula (Ie), formula (If), formula (Ig); n and p independently range from 0 to 6; where further symbols are as defined in claim 1, and to corresponding oligomers and (co)polymers. The compounds according to the invention are useful as semiconductors and have excellent solubility in organic solvents and excellent film-forming properties. In addition, high efficiency of energy conversion, excellent field-effect mobility, good on/off current ratios and/or excellent stability can be observed, when the polymers according to the invention are used in organic field effect transistors, organic photovoltaics (solar cells) and photodiodes.
Abstract:
A process for the preparation of a substituted 2,2'-dithiophene is described, which process comprises the steps (a), (c) and optional steps (b) and (d): a) reaction of a compound of the formula: (IV) wherein Hal stands for hydrogen or halogen, especially Br, R1 and R1' indepently are hydrogen or a substituent, n ranges from 0 to 6, preferably being 0; Y, if present, is substituted or unsubstituted phenylene, thiene, 1,2-ethylene, or is 1,2- ethinylene; R2 and R2' indepently are hydrogen or are selected from C1-C25alkyl, C3-C12cycloalkyl, C4- C25aryl, C5-C25alkylaryl or C5-C25aralkyl, each of which is unsubstituted or substituted; with a suitable lithium organic compound, preferably Li-alkyl or Li-alkylamide; b) optional exchange of lithium against another metal selected from Mg, Zn and Cu; c) reaction of the metallated intermediate obtained in step (a) or (b) with a suitable electrophil, which is CO2 or an aldehyde (addition reaction), or a compound Y'-R17 or Y'-R18-Z (substitution reaction), where R17 and R18 are as defined in claim 1; and optionally d) modification of the product obtained in step (c), e.g. by introducing one or more conjugating moieties Y as defined above, ring closure between suitable monovalent residues R17, exchange or extension of functional groups or substituents such as addition to carbonyl or substitution of carbonyl in R17 or R18. The products, including or corresponding polymers, are excellent conducting materials, e.g. for application in organic field effect transistors, integrated circuits, thin film transistors, displays, RFID tags, electro- or photoluminescent devices, displays, photovoltaic or sensor devices, charge injection layers, Schottky diodes, memory devices, planarising layers, antistatics, conductive substrates or patterns, photoconductors, or electrophotographic applications or recording materials.
Abstract:
The present invention relates to compounds of the formula (I) wherein the substituents are as defined in claim 1, and their use as organic semiconductor in organic devices, like diodes, organic field effect transistors and/or a solar cells. The compounds of the formula I have excellent solubility in organic solvents. High efficiency of energy conversion, excellent field-effect mobility, good on/off current ratios and/or excellent stability can be observed, when said compounds are used in semiconductor devices or organic photovoltaic (PV) devices (solar cells).
Abstract:
The present invention relates to polymers comprising one or more (repeating) unit(s) of the formula (I), or a polymer of formula (II), or (III), and their use as organic semiconductor in organic devices, especially in organic photovoltaics (solar cells) and photodiodes, or in a device containing a diode and/or an organic field effect transistor. The polymers according to the invention have excellent solubility in organic solvents and excellent film-forming properties. In addition, high efficiency of energy conversion, excellent field-effect mobility, good on/off current ratios and/or excellent stability can be observed, when the polymers according to the invention are used in organic field effect transistors, organic photovoltaics (solar cells) and photodiodes.
Abstract:
A process for the preparation of a substituted 2,2'-dithiophene is described, which process comprises the steps (a), (c) and optional steps (b) and (d): a reaction of a compound of the formula: with a suitable lithium organic compound, preferably Li-alkyl or Li-alkylamide; b) optional exchange of lithium against another metal selected from Mg1 Zn and Cu; c) reaction of the metallated intermediate obtained in step (a) or (b) with a suitable electrophil, which is CO2 or an aldehyde (addition reaction), or a compound Y'-R17 or Y'-R18-Z (substitution reaction), where R17 and R18 are as defined in claim 1; and optionally d) modification of the product obtained in step (c), e.g. by introducing one or more conjugating moieties Y ring closure between suitable monovalent residues R17, exchange or extension of functional groups or substituents such as addition to carbonyl or substitution of carbonyl in R17 or R18. The products, including or corresponding polymers, are excellent conducting materials