Abstract:
The invention relates to a continuous process for the preparation of amphiphilic graft polymers, wherein a vinyl ester component (B) composed of vinyl acetate and/or vinyl propionate (B1) and, if desired, a further ethylenically unsaturated monomer (B2), is polymerized in the presence of a polyalkylene oxide (A), a free radical-forming initiator (C) and, if desired, an additive (D), at a mean polymerization temperature at which the initiator (C) has a decomposition half-time of from 1 to 500 min, in at least one tubular reactor segment with a feed side and an outlet side, through which the reaction mixture comprising at least a part of component (A) to (C), and if desired (D), streams, a tubular reactor segment and the use of the inventive amphiphilic graft polymer. The invention further relates to an inventive amphiphilic graft polymer and the use thereof.
Abstract:
The invention relates to a continuous process for the preparation of amphiphilic graft polymers, wherein a vinyl ester component (B) composed of vinyl acetate and/or vinyl propionate (B1) and, if desired, a further ethylenically unsaturated monomer (B2), is polymerized in the presence of a polyalkylene oxide (A), a free radical-forming initiator (C) and, if desired, an additive (D), at a mean polymerization temperature at which the initiator (C) has a decomposition half-time of from 1 to 500 min, in at least one tubular reactor segment with a feed side and an outlet side, through which the reaction mixture comprising at least a part of component (A) to (C), and if desired (D), streams, a tubular reactor segment and the use of the inventive amphiphilic graft polymer. The invention further relates to an inventive amphiphilic graft polymer and the use thereof.