Abstract:
Die Erfindung betrifft einen Rohrbündelreaktor mit einer flachen Zuführungshaube. Alternativ kann auch die Abgabehaube flach ausgeführt werden. Die flache Ausführung verringert die in der Haube entstehende Reaktionswärme bei Reaktionstypen, die nicht nur im Rohbündel stattfinden (unkatalysierte Reaktionen und Reaktionen mit homogen verteiltem Katalysator). Dadurch werden unerwünschte Reaktionen, die aufgrund akkumulierter Wärme bereits in der Haube stattfinden, stark unterdrückt, wodurch eine höhere Selektivität bei temperaturempfindlichen Reaktionen erreicht wird. Zudem lässt sich die Temperaturverteilung innerhalb der Hauben präzise steuern. Der Rohrbündelreaktor umfasst ein Rohrbündel, das ein Zuführungsende aufweist, das mit einer Zuführungshaube des Rohrbündelreaktors verbunden ist, wobei die Zuführungshaube in einer flachen Bauform mit einer Querschnittsfläche am Zuführungsende und einem Innenvolumen ausgestaltet ist, und das Verhältnis von Innenvolumen zu Querschnittsfläche kleiner ist als 0,35 m. Ferner wird die Erfindung realisiert mittels eines Verfahren zum Betreiben eines Rohrbündelreaktors, umfassend: Einleiten eines Eduktgemischs in ein Rohrbündel und Umsetzen zumindest eines Anteils des Eduktgemischs innerhalb des Rohrbündels zu einem Produkt. Das Einleiten umfasst: Zuführen des Eduktgemischs in einen Innenraum einer Zuführungshaube des Rohrbündelreaktors und Weiterleiten des Eduktgemischs in ein Zuführungsende des Rohrbündels in Form eines Fluidstroms. Der Fluidstrom hat eine Querschnittsfläche beim Eintritt in das Zuführungsende und der Innenraum der Zuführungshaube, durch die der Fluidstroms fließt, weist ein Innenvolumen auf; wobei das Verhältnis von Innenvolumen zu Querschnittsfläche kleiner ist als 0,35 m.
Abstract:
Die Erfindung betrifft ein Verfahren zur destillativen Aufarbeitung eines Cyclododecatrien-haltigen Rohprodukts, das durch Verfahren zur Trimerisierung von Butadien erhalten wurde, zur Gewinnung des entsprechenden Cyclododecatrien-Reinprodukts. Die destillative Aufarbeitung wird jeweils in einer Trennwandkolonne, in der eine Trennwand in Kolonnenlängsrichtung unter Ausbildung eines oberen gemeinsamen Kolonnenbereichs, eines unteren gemeinsamen Kolonnenbereichs, eines Zulaufteils mit Verstärkungsteil und Abtriebsteil sowie eines Entnahmeteils mit Abtriebsteil und Verstärkungsteil ist, mit Zuführung des Cyclododecatrien-haltigen Rohprodukts im mittleren Bereich des Zulaufteils, Abführung einer Hochsiederfraktion aus dem Kolonnensumpf, einer Leichtsiederfraktion über den Kolonnenkopf und einer Mittelsiederfraktion aus dem mittleren Bereich des Entnahmeteils oder in thermisch gekoppelten Kolonnen durchgeführt.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Formkörpers, wobei in Schritt i) eine Schicht eines Sinterpulvers (SP), das unter anderem mindestens einen mehrwertigen Alkohol enthält, bereitgestellt wird und in Schritt ii) die in Schritt i) bereitgestellte Schicht belichtet wird. Des Weiteren betrifft die vorliegende Erfindung ein Verfahren zur Herstellung eines Sinterpulvers (SP) sowie ein 0Sinterpulver (SP) erhältlich nach diesem Verfahren. Außerdem betrifft die vorliegende Erfindung die Verwendung des Sinterpulvers (SP) in einem Sinterverfahren sowie Formkörper, erhältlich nach dem erfindungsgemäßen Verfahren.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von wenigstens einem monozyklischen Keton mit 4 bis 20 Kohlenstoffatomen durch Umsetzung eines Gemischs G1 enthaltend wenigstens ein monozyklisches Olefin mit 4 bis 20 Kohlenstoffatomen mit einem Gemisch G2 enthaltend wenigstens Distickstoffmonoxid, wobei diese Umsetzung adiabatisch durchgeführt wird.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von 4-Pentensäure, mindestens umfassend die Oxidation eines Gemischs (G) enthaltend 4-Pentenal, 3-Methyl-2-butanon und Cyclopentenoxid sowie die Verwendung eines Gemischs (G) enthaltend 4-Pentenal, 3-Methyl-2-butanon und Cyclopentenoxid zur Herstellung von 4-Pentensäure. Bevorzugt wird im Rahmen der vorliegenden Erfindung das Gemisch (G) als Nebenprodukt der Oxidation von Cyclopenten zu Cyclopentanon mittels Distickstoffmonoxid erhalten.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung mindestens einer cyclischen Verbindung mit Z Cyclen und 7 bis 16 C-Atomen mit einer Ketogruppe, mindestens umfassend die Stufen: (a1) Oxidation einer Zusammensetzung (A), mindestens enthaltend ein cyclisches Olefin mit Z Cyclen und 7 bis 16 C-Atomen und mindestens zwei C-C-Doppelbindungen, mittels Distickstoffmonoxid unter Erhalt einer Zusammensetzung (A1), (a2) Abtrennen des mindestens einen cyclischen Olefins mit Z Cyclen und 7 bis 16 C-Atomen mit mindestens zwei C-C-Doppelbindungen aus der Zusammensetzung (A1), um einen Zusammensetzung (A2) zu erhalten, und (b)destillative Behandlung der Zusammensetzung (A2) aus Schritt (a2), um eine Zusammensetzung (B) zu erhalten, enthaltend - die mindestens eine cyclische Verbindung mit Z Cyclen und 7 bis 16 C-Atomen mit einer Ketogruppe und - weniger als 1,0 Gew.-% der mindestens einen Verbindung mit Z-1 Cyclen und 7 bis 16 C-Atomen mit mindestens einer Aldehydgruppe, wobei Z 1, 2, 3 oder 4 sein kann.
Abstract:
Die Erfindung betrifft ein Verfahren zur Trimerisierung von Butadien zu Cyclododecatrien durch kontinuierliches Einspeisen von Butadien in ein Hauptreaktorvolumen, Erzeugen eines Reaktionsgemischs in dem Hauptreaktorvolumen, welches nicht umgesetztes Butadien und Cyclododecatrien umfasst, und Vorsehen von isothermen Bedingungen in dem Hauptreaktorvolumen durch Temperieren des Reaktionsgemischs. Das Verfahren umfasst ferner: Kontinuierliches Leiten des in dem Hauptreaktorvolumen erzeugten Reaktionsgemischs in ein Nachreaktorvolumen und Umsetzen zumindest eines Teil des nicht umgesetztes Butadiens in dem Nachreaktorvolumen zu Cyclododecatrien. Das in dem Nachreaktorvolumen vorgesehene Reaktionsgemisch wird im wesentlichen in adiabatem Gleichgewicht vorgesehen. Die Erfindung umfasst ferner eine Reaktoranordnung zum Ausführen des Verfahrens mit einem Haupt- und Nebenreaktor. Schließlich dient gemäß einem erfindungsgemäßen Verfahren die Erfassung einer Temperaturdifferenz zur Ermittlung der Butadienkonzentration im Hauptreaktor und zur Überwachung des Betriebs bzw. des Verfahrens.
Abstract:
A process for preparing formic acid by hydrogenation of carbon dioxide in the presence of a tertiary amine (I), a diamine (II), a polar solvent and a catalyst comprising gold at a pressure of from 0.2 to 30 MPa abs and a temperature of from 0 to 200°C, wherein the catalyst is a heterogeneous catalyst comprising gold.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung von Ameisensäure, umfassend die Schritte (a) homogen-katalysiertes Umsetzen eines Reaktionsgemischs (Rg) enthaltend Kohlendioxid, Wasserstoff, mindestens ein polares Lösungsmittel sowie mindestens ein tertiäres Amin in Gegenwart mindestens eines Komplexkatalysators in einem Hydrierreaktor unter Erhalt eines zweiphasigen Hydriergemischs (H) enthaltend eine Oberphase (O1), die den mindestens einen Komplexkatalysator und das mindestens eine tertiäre Amin (A1) enthält, und eine Unterphase (U1), die das mindestens eine polare Lösungsmittel, Reste des mindestens einen Komplexkatalysators sowie mindestens ein Ameisensäure-Amin-Addukt enthält, (b) Aufarbeitung des in Schritt (a) erhaltenen Hydriergemischs (H) gemäß einem der folgenden Schritte (b1) Phasentrennung des in Schritt (a) erhaltenen Hydriergemischs (H) in einer ersten Phasentrennvorrichtung in die Oberphase (O1) und die Unterphase (U1), oder (b2) Extraktion des mindestens einen Komplexkatalysators aus dem in Schritt (a) erhaltenen Hydriergemischs (H) in einer Extraktionseinheit mit einem Extraktionsmittel enthaltend das mindestens eine tertiäre Amin (A1) unter Erhalt eines Raffinats (R1) enthaltend das mindestens eine Ameisensäure-Amin-Addukt (A2) und das mindestens eine polare Lösungsmittel und eines Extrakts (E1) enthaltend das mindestens eine tertiäre Amin (A1) und den mindestens einen Komplexkatalysator oder (b3) Phasentrennung des in Schritt (a) erhaltenen Hydriergemischs (H) in einer ersten Phasentrennvorrichtung in die Oberphase (O1) und die Unterphase (U1) und Extraktion der Reste des mindestens einen Komplexkatalysators aus der Unterphase (U1) in einer Extraktionseinheit mit einem Extraktionsmittel enthaltend das mindestens eine tertiäre Amin (A1) unter Erhalt eines Raffinats (R2) enthaltend das mindestens eine Ameisensäure-Amin-Addukt (A2) und das mindestens eine polare Lösungsmittel und eines Extrakts (E2) enthaltend das mindestens eine tertiäre Amin (A1) und die Reste des mindestens einen Komplexkatalysators, (c) Abtrennung des mindestens einen polaren Lösungsmittels aus der Unterphase (U1), aus dem Raffinat (R1) oder aus dem Raffinat (R2) in einer ersten Destillationsvorrichtung unter Erhalt eines Destillats (D1) enthaltend das mindestens eine polare Lösungsmittel, das in den Hydrierreaktor in Schritt (a) rückgeführt wird, und eines zweiphasigen Sumpfgemischs (S1) enthaltend eine Oberphase (O2), die das mindestens eine tertiäre Amin (A1) enthält, und eine Unterphase (U2), die das mindestens eine Ameisensäure-Amin-Addukt (A2) enthält, (e) Spaltung des im Sumpfgemisch (S1) beziehungsweise gegebenenfalls in der Unterphase (U2) enthaltenen mindestens einen Ameisensäure-Amin-Addukts (A2) in einer thermischen Spalteinheit, unter Erhalt des mindestens einen tertiären Amins (A1), das zum Hydrierreaktor in Schritt (a) rückgeführt wird, und von Ameisensäure, die aus der thermischen Spalteinheit ausgeschleust wird, wobei unmittelbar vor und/oder während Schritt (c) der Unterphase (U1), dem Raffinat (R1) oder dem Raffinat (R2) Kohlenmonoxid zugegeben wird und/oder unmittelbar vor und/oder während Schritt (e) dem Sumpfgemisch (S1) beziehungsweise gegebenenfalls der Unterphase (U2) Kohlenmonoxid zugegeben wird.