Abstract:
Preparation of bifunctional polyisobutenes in which isobutene or an isobutene-containing monomer mixture is polymerized in the presence of a Lewis acid and a compound of the formula I in which X is an acyl radical or the radical of an organic or inorganic acid group, R1 to R4 are identical or different and are hydrogen or a hydrocarbon radical.
Abstract:
The present invention relates to methods for preparing an aqueous acrylamide solution having a low acrylic acid concentration. In addition, the present invention relates to methods for reducing the acrylic acid concentration of an aqueous acrylamide solution. The methods involve a bioconversion of acrylonitrile to acrylamide in the presence of a biocatalyst, wherein during the bioconversion the content of acrylonitrile is maintained at 0.3 w/w % or more referred to the total weight of the composition in the reactor. Also provided is an aqueous acrylamide solution which is obtained by the methods of the present invention. Furthermore, the present invention is related to an acrylamide homopolymer or copolymer obtained by polymerizing the acrylamide of the aqueous solution.
Abstract:
The present invention relates to means and methods for producing an amide compound from a nitrile compound with less acrylic acid as by-product using a Nitrile hydratase (NHase) and Amidase producing microorganism as biocatalyst. Also provided is an aqueous amide compound obtained by the methods of the invention as well as a composition comprising acrylamide or polyacrylamide as well as a dried microorganism exhibiting a NHase/Amidase activity ratio of at least 400 when being brought into contact with a nitrile compound to convert said nitrile compound into an amide compound.
Abstract:
What is described is a process for preparing functionalized polyisobutenes, in which isobutene or an isobutene-containing monomer mixture is polymerized in the presence of a Lewis acid and of an initiator, and the polymerization is terminated with a mixture of a phenol and a Lewis acid and/or a Brønsted acid. The terminal phenol groups can be derivatized or reduced to cyclohexanol systems.