1.
    发明专利
    未知

    公开(公告)号:DE502006005337D1

    公开(公告)日:2009-12-24

    申请号:DE502006005337

    申请日:2006-03-08

    Applicant: BASF SE

    Abstract: A prepolymer having an NCO content of less than 10%, based on the reaction of (a) diisocyanate with (b) polyether alcohol, the (b) polyether alcohol comprising (b1) and (b2) and/or (b3) with the following meanings for (b1), (b2) and (b3): (b1) polytetrahydrofuran having a molecular weight of from 1800 to 2100 g/mol and (b2) polyether alcohol having a molecular weight of from 500 to 7000 g/mol, based on ethylene oxide and/or propylene oxide, and/or (b3) polytetrahydrofuran having a molecular weight of from 800 to 1200 g/mol.

    3.
    发明专利
    未知

    公开(公告)号:AT416210T

    公开(公告)日:2008-12-15

    申请号:AT06743196

    申请日:2006-02-21

    Applicant: BASF SE

    Abstract: Cylindrical molded bodies (I) comprises cellular polyurethane elastomers with a density of 300-900 kg/m 3>, a tensile strength of >= 2 N/mm 2>, a breach extension of >= 200% and a tear resistance of >= 8 N/mm, where the cellular polyurethane elastomers are based on reaction of: (i) isocyanate groups of prepolymers based on methylenediphenyldiisocyanate and polyetherdiol; with (ii) cross linking components containing polyetheralcohol; diol with a molecular weight of 62-499 g/mol; water; and catalysts. Cylindrical molded bodies (I) comprises cellular polyurethane elastomers with a density of 300-900 kg/m 3>according to DIN EN ISO 845, a tensile strength of >= 2 N/mm 2>according to DIN EN ISO 1798, a breach extension of >= 200% according to DIN EN ISO 1798 and a tear resistance of >= 8 N/mm according to DIN ISO 34-1 B, where the cellular polyurethane elastomers are based on reaction of: (i) prepolymers exhibiting isocyanate groups based on methylenediphenyldiisocyanate and polyetherdiol with a molecular weight of 1500-3000 g/mol based on propylene oxide and/or ethyleneoxide; with (ii) cross linking components containing polyetheralcohol with a nominal functionality of 2-3 in relation to isocyanates and a molecular weight of 1500-6000 g/mol based on propylene oxide and/or ethyleneoxide; diol with a molecular weight of 62-499 g/mol; water; and catalysts, where the polyol exhibits an average molecular mass of smaller than 3900 g/mol, where the average polyol molecular mass (M(polyol)) is calculated by (M b11xm b11+...+M b1nxm b1n)xW p+(M b21xm b21+...+M b2nxm b2n)xW v/(m b11+...+m b1n)xW p+(m b21+...+m b2n)xW v, where M (polyol) is average polyol molecular mass in g/mol; M b11(and/or M b1n) is molecular mass of polyol b11 (and/or polyol b1n) in (i) in g/mol; m b11(and/or m b1n) is mass proportion of polyol b11 (and/or polyol b1n) in (i) in g/g; W pis mass proportion of (i) in the cylindrical molded article in g/g; M b21(and/or M b2n) is molecular mass of polyol b21 and/or (polyol b2n) in (ii) in g/mol; m b21(and/or m b2n) is mass proportion of polyol b21 (and/or polyol b2n) in (ii) in g/g; and W vis mass proportion of (ii) in the cylindrical molded article in g/g. Independent claims are included for: (1) automobile chassis containing shock absorbers, a hollow cylindrical molded bodies, which is placed on its piston rod; and (2) the preparation of (I).

    4.
    发明专利
    未知

    公开(公告)号:AT478903T

    公开(公告)日:2010-09-15

    申请号:AT02726228

    申请日:2002-03-28

    Applicant: BASF SE

    Abstract: Cellular polyisocyanate polyadducts are prepared by reacting (a) isocyanates with (b) compounds reactive toward isocyanates and (d) water, by a process in which a polyester having 2 hydroxyl groups and based on the condensation of at least one dicarboxylic acid with at least one alkanediol and/or alkenediol of 3 to 6 carbon atoms, whose carbon skeleton has at least one alkyl and/or alkenyl side chain between the hydroxyl groups, is used as (b).

    5.
    发明专利
    未知

    公开(公告)号:AT448260T

    公开(公告)日:2009-11-15

    申请号:AT06708694

    申请日:2006-03-08

    Applicant: BASF SE

    Abstract: A prepolymer having an NCO content of less than 10%, based on the reaction of (a) diisocyanate with (b) polyether alcohol, the (b) polyether alcohol comprising (b1) and (b2) and/or (b3) with the following meanings for (b1), (b2) and (b3): (b1) polytetrahydrofuran having a molecular weight of from 1800 to 2100 g/mol and (b2) polyether alcohol having a molecular weight of from 500 to 7000 g/mol, based on ethylene oxide and/or propylene oxide, and/or (b3) polytetrahydrofuran having a molecular weight of from 800 to 1200 g/mol.

    POLYURETHANELASTOMEREN
    6.
    发明专利

    公开(公告)号:DE502006002256D1

    公开(公告)日:2009-01-15

    申请号:DE502006002256

    申请日:2006-02-21

    Applicant: BASF SE

    Abstract: Cylindrical molded bodies (I) comprises cellular polyurethane elastomers with a density of 300-900 kg/m 3>, a tensile strength of >= 2 N/mm 2>, a breach extension of >= 200% and a tear resistance of >= 8 N/mm, where the cellular polyurethane elastomers are based on reaction of: (i) isocyanate groups of prepolymers based on methylenediphenyldiisocyanate and polyetherdiol; with (ii) cross linking components containing polyetheralcohol; diol with a molecular weight of 62-499 g/mol; water; and catalysts. Cylindrical molded bodies (I) comprises cellular polyurethane elastomers with a density of 300-900 kg/m 3>according to DIN EN ISO 845, a tensile strength of >= 2 N/mm 2>according to DIN EN ISO 1798, a breach extension of >= 200% according to DIN EN ISO 1798 and a tear resistance of >= 8 N/mm according to DIN ISO 34-1 B, where the cellular polyurethane elastomers are based on reaction of: (i) prepolymers exhibiting isocyanate groups based on methylenediphenyldiisocyanate and polyetherdiol with a molecular weight of 1500-3000 g/mol based on propylene oxide and/or ethyleneoxide; with (ii) cross linking components containing polyetheralcohol with a nominal functionality of 2-3 in relation to isocyanates and a molecular weight of 1500-6000 g/mol based on propylene oxide and/or ethyleneoxide; diol with a molecular weight of 62-499 g/mol; water; and catalysts, where the polyol exhibits an average molecular mass of smaller than 3900 g/mol, where the average polyol molecular mass (M(polyol)) is calculated by (M b11xm b11+...+M b1nxm b1n)xW p+(M b21xm b21+...+M b2nxm b2n)xW v/(m b11+...+m b1n)xW p+(m b21+...+m b2n)xW v, where M (polyol) is average polyol molecular mass in g/mol; M b11(and/or M b1n) is molecular mass of polyol b11 (and/or polyol b1n) in (i) in g/mol; m b11(and/or m b1n) is mass proportion of polyol b11 (and/or polyol b1n) in (i) in g/g; W pis mass proportion of (i) in the cylindrical molded article in g/g; M b21(and/or M b2n) is molecular mass of polyol b21 and/or (polyol b2n) in (ii) in g/mol; m b21(and/or m b2n) is mass proportion of polyol b21 (and/or polyol b2n) in (ii) in g/g; and W vis mass proportion of (ii) in the cylindrical molded article in g/g. Independent claims are included for: (1) automobile chassis containing shock absorbers, a hollow cylindrical molded bodies, which is placed on its piston rod; and (2) the preparation of (I).

Patent Agency Ranking