Abstract:
Disclosed herein are processes comprising electrolyzing an aqueous solution comprising lithium, wherein the aqueous solution has a pH less than 0.5. Also disclosed are processes comprising electrolyzing a first aqueous solution comprising lithium to obtain a second aqueous solution comprising lithium, and an acidic aqueous solution having a pH less than 0.5, adjusting the pH of the second aqueous solution with the acidic aqueous solution to obtain a third aqueous solution comprising lithium having a pH less than 0.5, and electrolyzing the third aqueous solution comprising lithium. Additionally disclosed are, processes comprising stripping a liquid medium comprising lithium with an acidic aqueous solution to obtain an aqueous solution comprising lithium, and electrolyzing the aqueous solution comprising lithium. Further disclosed are processes for preparing a liquid medium comprising lithium.
Abstract:
The invention relates to gas diffusion electrodes for rechargeable electrochemical metal-oxygen cells, which comprise at least one porous support and one or more layers which are applied to one side of the porous support and comprise at least one catalyst for a metal-oxygen cell, wherein at least one function-relevant parameter changes continuously or discontinuously with increasing distance from the porous support in the catalyst-comprising layer or layers.The present invention further relates to processes for producing such gas diffusion electrodes and rechargeable electrochemical metal-oxygen cells comprising such gas diffusion electrodes.
Abstract:
The invention relates to gas diffusion electrodes for rechargeable electrochemical cells, which comprise at least one support material bearing at least one catalyst, wherein the support material comprises at least one compound selected from the group consisting of electrically conductive metal oxides, carbides, nitrides, borides, silicides and organic semiconductors.The present invention further relates to a process for producing such gas diffusion electrodes and also rechargeable electrochemical cells comprising such gas diffusion electrodes.
Abstract:
The invention relates to a process for producing a rechargeable electrochemical metal-oxygen cell, comprising at least one positive electrode, at least one negative metal-comprising electrode and at least one separator having two sides for separating the positive and negative electrodes, wherein, in one of the process steps, at least one side of the separator is coated with at least one material for forming one of the two electrodes (hereinafter referred to as electrode material) or at least one side of at least one of the two electrodes is coated with at least one material for forming the separator (hereinafter referred to as separator material) to form a separator-electrode assembly.
Abstract:
The present invention relates to rechargeable electrochemical zinc-oxygen cells comprising A) at least one anode comprising metallic zinc, B) at least one gas diffusion electrode comprising (B1) at least one cathode active material, and (B2) optionally at least one solid medium through which gas can diffuse, and C) an aqueous electrolyte comprising boric acid. The present invention further relates to uses of the inventive rechargeable electrochemical zinc-oxygen cells, to zinc-air batteries comprising the inventive rechargeable electrochemical zinc-oxygen cells, and to the use of an aqueous electrolyte comprising boric acid for production or for operation of rechargeable electrochemical zinc-oxygen cells.