Abstract:
PROBLEM TO BE SOLVED: To provide compact adsorption systems that are capable of rapid temperature swings and rapid cycling, and novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption.SOLUTION: In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. In another aspect, the apparatus or methods utilize heat exchange channels of varying lengths that have volumes controlled to provide equal heat fluxes. Methods of fuel cell startup are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
Abstract:
A microcomponent apparatus for conducting unit operations comprising: a microcomponent device wherein, during operation, a stream enters the microcomponent device and a first unit operation is performed on said stream, said stream and exiting the microcomponent device; a processing device connected to the microcomponent device; said processing device being capable of modifying said stream by a second unit operation wherein, during operation, said stream re- enters said microcomponent device where said first unit operation can again be performed on the stream, and said stream exits the microcomponent device.
Abstract:
Microchannel devices and method of use are disclosed wherein a reaction microchamber (52) is in thermal contact with a heat exchange channel (61). An equilibrium limited exothermic chemical process occurs in the reaction microchamber (52). Sufficient heat is transferred to the heat exchange channels to substantially lower the temperature in the reaction microchamber (52) down its length to substantially increase at least one performance parameter of the exothermic chemical process relative to isothermal operation. Optionally, an endothermic reaction occurs in the heat exchange channel (61) which is sustained by the exothermic chemical process occurring the exothermic reaction chamber. Both the reaction chamber (52) and the heat exchange channel (61) can be of micro dimension. Catalyst (75) can be provided in the microchamber (52) in sheet form such that reactants flow by the catalyst sheet. A microchannel reactor (100) can be formed by integrally bonding an alternating stack of thin recessed sheets wherein the recesses in the sheets define the flow paths.
Abstract:
The present invention provides compact adsorption systems that are capable o f rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption medi a is selectively heated, thus reducing energy costs. Methods and systems for g as adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. In another aspect, the apparatus or methods utilize heat exchange channels of varying lengths that have volumes controlled to provide equal heat fluxes. Methods of fuel cell startup are al so described. Advantages of the invention include the ability to use (typically ) 30-100 times less adsorbent compared to conventional systems.
Abstract:
Chemical processors are configured to reduce mass, work in conjunction with solar concentrators, and/or house porous inserts in microchannel or mesochannel devices made by additive manufacturing. Methods of making chemical processors containing porous inserts by additive manufacturing are also disclosed.
Abstract:
Microchannel devices and method of use are disclosed wherein a reaction microchamber 52 is in thermal contact with a heat exchange channel 61 . An equilibrium limited exothermic chemical process occurs in the reaction microchamber 52 . Sufficient heat is transferred to the heat exchange channels to substantially lower the temperature in the reaction microchamber 52 down its length to substantially increase at least one performance parameter of the exothermic chemical process relative to isothermal operation. Optionally, an endothermic reaction occurs in the heat exchange channel 61 which is sustained by the exothermic chemical process occurring the exothermic reaction chamber. Both the reaction chamber 52 and the heat exchange channel 61 can be of micro dimension. Catalyst 75 can be provided in the microchamber 52 in sheet form such that reactants flow by the catalyst sheet. A microchannel reactor 100 can be formed by integrally bonding an alternating stack of thin recessed sheets wherein the recesses in the sheets define the flow paths.
Abstract:
A laminated, multiphase condensor having wicking structures and gas flow channels is described. During operation, a fluid mixture passes in through fluid inlet (2) into header (4) where it is distributed into gas flow channe ls (6 and 6'). Coolant passes through elongated coolant slots (8) in cooling channel layer (10). The material surrounding the coolant slots (8) are the cooling channel walls. As the fluid mixture passes through the gas flow channels (6 and 6'), heat from the fluid is removed primary heat exchange surface (13) (this surface also is an exterior surface of a cooling channel wall) and a liquid condenses from the fluid mixtu~re, flows into wick (11), through optional pore throat (12) and into liquid flow channel (14). The figure is an exploded view and shows a separation between the wick and the pore throat; however, in typical operation the optional pore throat should contact the wick. The device can work under the influence of gravity, but, more typically, sucti is applied to pull liquid out through liquid outlet (1 6) . In a device with multiple liquid flow channels, an optional footer (not shown) may carry flow from multiple liquid flow channels. Gas from the gas flow channels (6 and 6') may pass through an optional gas footer and out through gas outlet (20).
Abstract:
Laminated, multiphase separators and contactors having wicking structures and gas flow channels are described. Some preferred embodiments are combined with microchannel heat exchange. Integrated systems containing these components are also part of the present invention.
Abstract:
Laminated, multiphase separators and contactors having wicking structures an d gas flow channels are described. Some preferred embodiments are combined wit h microchannel heat exchange. Integrated systems containing these components a re also part of the present invention.