Abstract:
The present invention provides, inter alia, a composition useful for producing a homogeneous, semipermeable membrane, the composition comprising a polysulfone semipermeable membrane, the polysulfone semipermeable membrane comprising a mixture of: an ultra-high-molecular-weight hydrophilic polymer, a polysulfone compound and a solvent for the polysulfone compound, and the polysulfone semipermeable membrane having a homogeneous structure such that the polysulfone semipermeable membrane has a substantially uniform structure. Another aspect of this invention discloses methods for fabricating semipermeable membranes by homogeneously mixing the composition, melting the composition, and melt-spinning the molten composition. Another aspect of the present invention includes homogeneous, melt-spun, semipermeable membranes useful for liquid separation processes, such as, but not limited to, microfiltration, ultrafiltration, dialysis, and reverse osmosis.
Abstract:
The present invention provides, inter alia, a composition useful for produci ng a homogeneous, semipermeable membrane, the composition comprising a polysulfone semipermeable membrane, the polysulfone semipermeable membrane comprising a mixture of: an ultra-high-molecular-weight hydrophilic polymer, a polysulfone compound and a solvent for the polysulfone compound, and the polysulfone semipermeable membrane having a homogeneous structure such that the polysulfone semipermeable membrane has a substantially uniform structure . Another aspect of this invention discloses methods for fabricating semipermeable membranes by homogeneously mixing the composition, melting the composition, and melt-spinning the molten composition. Another aspect of the present invention includes homogeneous, melt-spun, semipermeable membranes useful for liquid separation processes, such as, but not limited to, microfiltration, ultrafiltration, dialysis, and reverse osmosis.
Abstract:
The present invention provides, inter alia, a composition useful for producing a homogeneous, semipermeable membrane, the composition comprising a polysulfone semipermeable membrane, the polysulfone semipermeable membrane comprising a mixture of: an ultra-high-molecular-weight hydrophilic polymer, a polysulfone compound and a solvent for the polysulfone compound, and the polysulfone semipermeable membrane having a homogeneous structure such that the polysulfone semipermeable membrane has a substantially uniform structure. Another aspect of this invention discloses methods for fabricating semipermeable membranes by homogeneously mixing the composition, melting the composition, and melt-spinning the molten composition. Another aspect of the present invention includes homogeneous, melt-spun, semipermeable membranes useful for liquid separation processes, such as, but not limited to, microfiltration, ultrafiltration, dialysis, and reverse osmosis.
Abstract:
The present invention discloses, inter alia, a composition useful for producing a homogeneous, semipermeable membrane, the composition comprising (1) a polysulfone compound, (2) a solvent, such as sulfolane, antypyrine, delta -valerolactam, diethyl phthalate, and mixtures thereof, and (3) a non-solvent, such as poly(ethylene glycol), di(ethylene glycol), tri(ethylene glycol), glycerol, and mixtures thereof. Another aspect of this invention discloses methods for fabricating semipermeable membranes by homogeneously mixing the composition of the polysulfone compound, solvent, and non-solvent, melting the composition, and melt-spinning the molten composition. Another aspect of the present invention includes homogeneous, melt-spun, semipermeable membranes useful for liquid separation processes, such as, but not limited to, microfiltration, ultrafiltration, dialysis, and reverse osmosis.
Abstract:
An improved process for making a cellulose acetate semipermeable mebrane and medical products therefrom. In the process there is provided a molten liquid comprising cellulose acetate, a solvent for cellulose acetate, and a non-solvent for cellulose acetate, and this liquid is extruded to produce the membrane as a sheet or a hollow fiber. The solvent and the non-solvent are removed from the extruded membrane to produce a semipermeable membrane having a water permeability, and this semipermeable membrane is then impregnated with a liquid consisting substantially of water so as to render the semipermeable membrane capable of being stored until time of use without undergoing a substantial loss in water permeability. The semipermeable membrane can be incorporated in a casing in order to produce a medical product, the membrane being impregnated in the product.
Abstract:
Semipermeable membranes are disclosed for purifying aqueous biological fluids. The membranes are particularly suitable for purifying extracorporeal blood via hemodialysis. The membranes, preferably configured as hollow fibers, are made from a hydrophilic polymeric material, preferably cellulose acetate. Features of the membranes include an ultrafiltration coefficient (KuF) of about 15 to about 55 mL/hr/mmHg/m (thus termed "high-flux" type membranes), a urea mass transfer coefficient (KoV(urea)) of at least 38x10 cm/min, and a ratio of KoV(urea)/KuF of at least 2.5x10 . Hollow fibers of such membranes suitable for hemodialysis have a lumen diameter of about 175 to about 210 mu m and a wall thickness of about 10 to about 35 mu m. According to disclosed methods for making the membranes, a melt comprising about 32 to about 40% w/w cellulose acetate, about 5 to about 10% w/w glycerine, and about 50 to about 67% w/w polyethylene glycol is extruded to make hollow fibers; the fibers are cooled, cold-stretched, water-leached, and replasticized using a glycerine solution.