Abstract:
Fuel cartridges (10) for fuel cells are disclosed. The fuel cartridge (10) includes an outer casing (12), an inner liner ( 14) containing fuel and a valve component (18) adapted to transport fuel from the fuel supply to a fuel cell. In one embodiment, the outer casing (12) and the inner liner (14) are made by blowing molding and the inner liner (14) pulls away from the outer casing (12) as the fuel is transported from the fuel supply. In another embodiment, the inner liner (14) is integral to the outer casing (12) at a region (24) proximate to the location of the valve component (18).
Abstract:
Disclosed herein is a fuel cell assembly that arranges a plurality of individual fuel cells into an array. The fuel cells are set into openings formed in a frame. The openings are arranged into the array, such as in columns and rows. A rear cover is sealingly attached to the frame, thereby defining a chamber between the frame and a base of the rear cover, where the chamber serves as a manifold. Optional supports extend from the base to the fuel cells. The void forms a fluid manifold for dispersing fuel for the fuel cells from a fuel reservoir to the fuel cells. Alternatively, the rear cover separates the interstitial space between the rear cover and the frame into compartments, which are fluidly interconnected by channels. The array may also include a functional element electrically connected to the fuel cells configured to transfer power an electronic device.
Abstract:
Liquid feed unit (3) intended to be mounted in a liquid spray instrument, the said unit comprising: a liquid cartridge (6), and a liquid spray head (7) connected to the liquid cartridge (6). The liquid feed unit (3) also comprises an energy supply source (8) attached to the liquid cartridge (6) so as to form a pre-assembled feed unit (3) intended to be mounted directly in the liquid spray instrument.
Abstract:
The present application is directed to a gas-generating apparatus and various pressure regulators or pressure-regulating valves. Hydrogen is generated within the gas-generating apparatus and is transported to a fuel cell. The transportation of a first fuel component to a second fuel component to generate of hydrogen occurs automatically depending on the pressure of a reaction chamber within the gas-generating apparatus. The pressure regulators and flow orifices are provided to regulate the hydrogen pressure and to minimize the fluctuation in pressure of the hydrogen received by the fuel cell. Connecting valves to connect the gas-generating apparatus to the fuel cell are also provided.
Abstract:
A gas-generating apparatus includes a reaction chamber having a first reactant, a reservoir having an optional second reactant, and a self-regulated flow control device. The self-regulated flow control device stops the flow of reactant from the reservoir to the reaction chamber when the pressure of the reaction chamber reaches a predetermined level. Methods of operating the gas-generated apparatus and the self-regulated flow control device, including the cycling of a shut-off valve of the gas-generated apparatus and the cycling of the self-regulated flow control device are also described.
Abstract:
A gas-generating apparatus includes a cartridge including a reservoir having a first reactant and a reaction chamber, and a receiver that can include a flow control device. The receiver is adapted to receive the cartridge and to transport the first reactant to the reaction chamber after connection with the cartridge. The flow control device is adapted to stop the transport of reactant when the pressure in the reaction chamber reaches a predetermined pressure.
Abstract:
Disclosed herein are multiple embodiments of a hydrogen generator (10) that measures, transports or stores a single dose of a viscous fuel component from first fuel chamber (12) in storage area (38) when the internal hydrogen pressure (44, 44') of the hydrogen generator is high, and transports this single dose to a metal hydride fuel component in second fuel chamber (14) when the internal pressure is low, so that the viscous liquid and metal hydride fuel components react together to generate more hydrogen and to restart the cycle. The viscous fuel component can be water or alcohol, such as methanol, in liquid or gel form, and the metal hydride fuel component can be sodium borohydride or other metal hydride that chemically reacts with the viscous fuel to produce hydrogen. The metal hydride fuel component can be in solid or viscous form, e.g., aqueous form.
Abstract:
The present invention involves modifying certain characteristics of solid and aqueous chemical metal hydride fuels to increase the efficiency of hydrogen generation and/or to reduce the problems associated with such conventional hydride fuel sources. The present invention also relates to an apparatus (10) usable with the release of hydrogen from hydride-water fuel cells in which both the borohydride (110) and the water (210) components are in flowable or liquid form.